وزارة التعليم العالي والبحث العلمي جـهاز الإشـراف والتقويم العلمي دائرة ضمان الجودة والاعتماد الأكاديمي

استمارة وصف البرنامج الأكاديمي للكليات والمعاهد للعام الدر اسى 2024-2023

الجامعة : بغداد الكلية /المعهد : العلوم القسم العلمي : الكيمياء تاريخ ملء الملف :

التوقيع : التوقيع : اسم رئيس القسم/نوط له الم مرد با عرب الحسيل مر اسم المعاون العلمي : الاستاذ الدكتور نمير إبراهيم عبداس / التاريخ : التاريخ : حافن العميد لنشؤون العلمية والدراسات العلنا

دقق الملف من قبل شعبة ضمان الجودة والأداء الجامعي اسم مدير شعبة ضمان الجودة والأداء الجامعي: ١٠٠٠ ١ - (د مال زمد ن التاريخ 1 1 التوقيع

مصادقة السيد العميد الأساذا لساعتذ ليكتمز

The graduate program awards a master's degree in one of the chemical specializations after completing two courses of 15 weeks and 2 to 3 hours for each course (compulsory and elective) in both courses and submitting and discussing the master's thesis by a specialized scientific committee, noting that the number of course units is 26 units and the number of thesis units is 10 units. The course description for the five chemistry majors includes the :following

- .Physical Chemistry -1
- Organic chemistry -2
- Inorganic chemistry -3
- Analytical Chemistry -4
 - .Biochemistry -5

University of Baghdad 1. Educationa	l institution
College of Science/Chemistry 2. Scientific department	nent/center
ademic Program of the Department of Chemistry 3. Name of the a profession	academic or nal program
Master of Science in Chemistry (Specialization) 4. Name of the final	l certificate
Semester 5. Acader	mic system:
None Annual/cour	rses/others
Internet 6. Accredited ad	ccreditation program
2023/9/1 7. Other external	influences
1 Academic Program	Objectives

1. Academic Program Objectives

1- Preparing highly skilled and competent researchers in various chemistry specializations to provide universities, research and educational institutions and other ministries with qualified scientific cadres that keep pace with scientific progress in the world.

2- Keeping pace with developments in curricula, openness and communication with similar scientific institutions inside and outside the country, and keeping pace with the era of development through modern electronic systems.

Contributing to enriching human knowledge through specialized studies and serious scientific research to reach 3-

innovative scientific and applied additions, and revealing new facts

Encouraging scientific competencies to keep pace with the rapid progress of science and technology and pushing them 4to creativity and innovation and developing scientific research and directing it to address what serves society and increase .the college's ability in sustainable development and community service

That the Chemistry Department be a model that seeks to achieve a solid scientific level and prepare competent 5-

scientists who possess scientific backgrounds and chemical or research skills that enable them to practice their work safely and effectively, and are prepared to keep pace with cognitive and technical progress and strive to obtain higher degrees in various chemical specializations, and contribute to preparing future leaders in scientific and educational fields. Through: Striving to meet international standards and requirements for quality and academic accreditation and achieving globality in the quality of educational programs and services provided by the college and competing to advance on international classification lists. Drawing a roadmap for the purpose of improving educational quality and scientific activities within the college and developing programs and plans with a future vision

1- Introducing modern educational methods and advanced technologies in teaching methods and preparing high-level educational programs and employing information and communication technologies in the process of transferring and producing knowledge, scientific research and in preparing curricula for educational programs.

7- Activating the scientific research movement and creating an appropriate climate for creativity and invention.

8- Providing faculty members capable in terms of efficiency and number to implement the mission of the college and department.

9- Providing a supportive organizational climate and academic environment.

.Employing scientific research in serving the country's social and developmental issues -10

Activating participation, coordination and integration between the college, department and society by holding -11

seminars, conferences and study groups to discuss the country's health and scientific issues

Contributing to the transfer and production of knowledge and the requirements of building the national system for -12 science and technology through effective participation in local, Arab, international or global seminars, study groups and .conferences

Required program outcomes, teaching, learning and assessment methods .1

.A-A Cognitive objectives

A1- Enabling students to gain knowledge and understanding of chemistry in all its precise .specializations

A2- Enabling students to gain knowledge and understanding of the chemical structures of .compounds

A3- - Enabling students to gain knowledge and understanding of the mechanics of chemical .reactions and methods of detection and diagnosis

.A4- Enabling students to gain knowledge and understanding of practical experiments

A5- Striving to prepare scientists and researchers with scientific and laboratory skills of a .research nature

A5- Providing educational programs that keep pace with technical development and .conducting solid scientific research and studies

A6- Interacting with scientific and technical experiments and experiences in a way that serves .society

.A7- Establishing research projects that provide solutions to society's problems

:B - Program specific skill objectives

B 1 - Providing students with the special skills to know the problems that society suffers from, their causes, how they are distributed and the impact of different factors on them, and knowing the .most appropriate ways and means to solve these problems

.B 2 - Providing students with the basic skills to conduct various scientific studies

B 3 - The graduate acquires the knowledge and research skills necessary for his academic and .professional future

B 4 - Graduates of this program are prepared either for academic professions or practical .professions in other ministries outside of higher education

Teaching and learning methods

.Lecture method and use of interactive whiteboard -1

.Explanation and clarification -2

Providing students with the basics and additional topics related to the outputs of -3 .thinking and chemical analysis for various chemical specializations

Forming discussion groups during lectures to discuss chemistry topics that require -4 .thinking and analysis

Asking students a set of mental questions during lectures such as what, how, when -5 .and why for specific topics

.Giving students homework that requires self-explanations in causal ways -6

Evaluation methods

Research evaluation-1

Theoretical tests -2

Reports and studies -3

.Daily exams with self-solved questions -4

Specific grades with homework -5

.Final exam -6

:C- Emotional and value-based objectives

.C1- Enabling students to understand chemistry in all specializations

.C2- Enabling students to solve problems related to the analysis, diagnosis and discrimination of chemical compounds

.C3- Enabling students to solve problems related to the intellectual framework of chemistry

.C4- Acquiring the skill of dealing ethically with participants in scientific research

.C3- Creating scientific competencies characterized by professionalism, transparency, honesty and integrity

Teaching and learning methods

Lecture method and use of interactive whiteboard -1

.Explanation and clarification -2

.Providing students with the basics and additional topics related to the outputs of thinking and chemical analysis -3

.Forming discussion groups during lectures to discuss chemistry topics that require thinking and analysis -4

Asking students a set of mental questions during lectures such as what, how, when and why for specific topics -5

.Giving students homework that requires self-explanations in causal ways -6

Evaluation methods

.Evaluating the student's performance during the lecture -1

.Evaluating the student's performance during conducting field research as part of the practical evaluation -2

.Short exams during the semester -3

.Theoretical evaluation exam for the middle and end of the semester -4

.Scientific discussion of the graduate student's thesis or dissertation -5

D- General and transferable skills (other skills related to employability and personal .(development

.D1- Preparing a graduate with a high mental ability to be confident and make decisions D2- Mastering the basic skills of practicing scientific research theoretically and practically in .theoretical chemistry

D3- Writing and evaluating technical reports and scientific papers in a professional manner in the .field of theoretical chemistry

D4- Evaluating research-based methods, tools and equipment used in chemistry in all .specializations

.D5- Applying the analytical approach and using it in the field of theoretical chemistry

D5- Applying specialized knowledge in theoretical chemistry and integrating it with related .knowledge in his professional practice

D6- Optimizing the use of scientific tools, equipment and resources in development and .preservation

D7- Demonstrating awareness of current problems and modern visions in the field of theoretical .chemistry

.D8- Identifying professional problems and finding solutions to them

D9- Mastering an appropriate range of professional skills in the field of theoretical chemistry, and .using appropriate technological means to serve his professional practice

.D10- Communicating effectively and being able to lead work teams

.D11- Decision making in different professional contexts

.D12- Employing available resources to achieve the highest benefit and preserving them

D13- Demonstrating awareness of his role in developing society and preserving the environment .in light of global and regional changes

.D14- Managing time efficiently

D15- Acting in a manner that reflects commitment to integrity, credibility and adherence to the .rules of the profession in the field of theoretical chemistry

D16- Developing himself academically and professionally and being able to learn continuously .in the field of theoretical chemistry

Teaching and learning methods

.Lecture method and use of interactive whiteboard -1

.Explanation and clarification -2

Providing students with the basics and additional topics related to the outputs of -3 .thinking and chemical analysis

Forming discussion groups during lectures to discuss chemistry topics that -4 .require thinking and analysis

Asking students a set of thinking questions during lectures such as what, how, -5 .when and why for specific topics

.Giving students homework that requires self-explanations in causal ways -6

.Discussions via the electronic class Google Classroom -7

Audio and video lectures via the Google Meet platform -8 $\,$

Lectures interspersed with PowerPoint Presentations -9

Evaluation methods

.Evaluating the student's performance during the lecture -1

Evaluating the student's performance during the field research as part of the -2 .practical evaluation

.Short exams during the semester -3

.Theoretical evaluation exam for the middle and end of the semester -4

.Scientific discussion of the graduate student's thesis -5

Program structure .1

Credi	t hours	Course name	Cour	Academic stage
pract ical	theore tical		code	
pract ical	2	Biological membrane and metabolism		Master's / First course / All specializations
	2	Advanced separation & Thermal Analysis techniques		
	2	Intermediates in organic chemistry mechanisms and stability		
	2	Transition elements, representative Chemistry of elements and their compounds		
	2	thermodynamics Quantum chemistry and advance		
	1	English Language		
	Comp leted	Seminar		
	3	Natural products chemistry		Master's / Second Course / Organic Chemistry Specialization
	3	Chemistry of the Sulfur		
	3	Spectrometric Identification of Organic Chemistry		
	3	The Nitro group in organic synthesis		
		Stereochemistry		
	2	Optional topic		

		1
	English Language	1
	(Writing methods (research, thesis, dissertation Writing methods (research, letter, thesis)	1
Master's / Second Course / Analytical Chemistry	Amplification reactions	3
	Advance flow injection analysis	3
	Principles and statistical of ion selective electrode	3
	Advanced Analytical methods for Analysis of Elements	3
	Optional topic	2
	Modern extraction and separation techniques	3
	Writing methods (research, letter, thesis)	1
Master's / Second Course / Physical Chemistry Specialization	Advance corrosion chemistry	3
	Nano identification techniques	3
	Advanced photochemistry	3
	Surface phenomena and heterogeneous catalysis	3
	Optional topic	1
	Writing methods (research, letter, thesis	1
Master's / Second Course / Inorganic Chemistry Specialization	Boron Chemistry	3
	Crown ethers and their complexes with transition metal ions	3
	Metal Ions in Biological System	3
	Electronic spectra of inorganic compounds	3
	Optional topic	2
	Writing methods (research, letter, thesis)	1
Master's degree/Second	selective topics in Biochemistry	3

		course/Bioche mistry major
3	Biochemistry of Blood	
3	Chemistry of proteins and separation methods	
3	Enzymes and their application in the clinical chemistry	
2	selective topics in Biochemistry	
1	Optional topic	
1	Writing methods (research, letter, thesis)	
3	spectrometric Identification of Organic Chemistry	Master's / Second Course / Organic Chemistry Specialization
3	Stereochemistry	
2	Natural products Chemistry	
2	Organometallic and Asymmetric Synthesis	
2	The Nitro group in organic synthesis	
2	Test topic	
2	Writing methods (research, letter, thesis	

1. Planning for personal development

- Following up on scientific development by contacting international universities via the Internet

- Planning for personal development .1
- Following up on scientific development by contacting international universities via the Internet -
 - Participating in scientific conferences inside and outside Iraq -
 - Participating in scientific workshops and seminars inside and outside Iraq -
 - Field visits to industrial projects -

1. Admission Criteria (Setting Regulations for Admission to the College or Institute)

All applicants for the Master's program in various chemistry specializations must meet the admission requirements for graduate programs as stipulated in the university's admission policy in addition to the following requirements that must be considered for admission to the university:

Hold a bachelor's degree from a university or college accredited by the Ministry of Higher Education or its -1 .equivalent

Obtain a passing score on the TOEFL test -2

Pass the personal interview -3

Complete the application online on the home page of the College of Science - University of Baghdad during the -4 admission period

.Pass the competitive exam, scientific test and personal interview -5

.Comparison in admission according to competition points -6

.(Application mechanism according to application channels (general and special admission -7

Competition for specialization (organic chemistry, inorganic chemistry, physical chemistry, biochemistry, -8 (analytical chemistry)

1. The most important sources of information about the program

Instructions of the Ministry of Higher Education and Scientific Research / Research and Development Department-1. Instructions of the University Council and the College Council -2

																			Curriculum Skills Map
																	ividual learning outcomes	of the prog	ramme being assessed.
								Re	equi	red			U		me	s of the			
trans (o r empl	sfei oth rela loy: pei	eral a rable er ski ated te ability rsonal	skills lls o y and	Em		l and v pals	value	spe	cifi	ram c ski tives	ill	C	<u>gran</u> Cogn bjec	itiv		Basic Or optional	Course name	Cour se code	Year / Level
<u> </u>	eve د	elopm د2	ent د1	1=	ج3	2-	1-	ب4	()	()	()	<u>4</u> ۱	Í	Í	Í				
	3	23	1-	ج4	5	ج2	15	49	ب 3	ب 2	ب 1	4'	3	2	1				
X	X	X	X	X	X	X	X	X	X	X	X	X	X		X	Basic	Biological membrane and metabolism		Master's / First Course All Specializations
X	X	X	X	X	X	X	X	X	X	X	X	X	X	X	X	Basic	Thermal Analysis Advanced & separation techniques		
X	X	X	X	X	X	X	X	X	X	X	X	X	X	X	X	Basic	Intermediates in organic chemistry mechanisms and stability		Master's / First Course
X	X	X	X	X	X	X	X	X	X	X	X	X	X	X	X	Basic	Chemistry of transition elements, representative		

																	elements and their compounds	
X	X	X	X	X	X	X	X	X	X	X	X	X	X	X	X	Basic	Quantum chemistry and advance thermodynamics	Master's/ First Course
X	X	X	X	X	X	X	X	X	X	X	X	X	X	X	X	Basic	English Language	
X		X	X	X	X	X	X	X	X	X	X				X	Basic	Seminar	
X	X	Х	X	X	X	Х	Х	X	X	X	X		X		X	Basic	Natural products chemistry	Master's/ Second Course/ Organic Chemistry
X	X	X	X	X	X	X	X	X	X	X	X	X	X	X	X	Basic	Organometallic and Asymmetric Synthesis	
X	X	X	X	X	X	X	X	X	X	X	X	X	X	X	X	Basic	Spectrometric Identification of Organic Chemistry	
X	X	X	X	X	X	X	X	X	X	X	X	X	X	X	X	Basic	The Nitro group in organic synthesis	
Χ		X	X	Χ	X	Χ	X	X	Χ	Χ	Χ	Χ	Χ	Χ	Х	Basic	Stereochemistry	
X	X	X	X	X	X	X	X	X	X	X	X	X	X	X	X	Option al	موضوع اختياري	
X	X	X	X	X	X	X	X	X	X	X	X	X	X	X	X	Option al	Writing methods (research, letter, thesis)	
X	X	X	X	X	X	X	X	X	X	X	X	X	X	X	X	Basic	Amplification reactions	Master's / Second Course /

																		Analytical Chemistry
X	X	X	X	X	X	X	X	X	X	X	X	X	X	X	X	Basic	Advance flow injection analysis	
X	X	X	X	X	X	X	X	X	X	X	X	X	X	X	X	Basic	Principles and statistical of ion selective electrode	
X		X	X	X	X	X	X	X	X	X	X	X			X	Basic	Advanced Analytical methods for Analysis of Elements	
X	X	X	X	X	X	X	X	X	X	X	X	X	X	X	X	Basic	Modern Extraction and separation Techniques	
X	X	X	X	X	X	X	X	X	X	X	X	X	X	X	X	option al	Optional topic	
X	X	X	X	X	X	X	X	X	X	X	X	X	X	X	X	Basic	Writing methods (research, letter, thesis)	
X	X	X	X	X	X	X	X	X	X	X	X	X	X	X	X	Basic	selective topics in Biochemistry	Master's / Second Course / Biochemistry
X	X	X	X	X	X	X	X	X	X	X	X	X	X	X	X	Basic	Biochemistry of Blood	
X	X	X	X	X	X	X	X	X	X	X	X	X	X	X	X	Basic	Chemistry of proteins and separation proteins	
Χ	X	Χ	Χ	Χ	Χ	Χ	Χ	Χ	X	X	X	X	X	X	X	Basic		

																	Enzymes and their in the application clinical chemistry	
X	K	X	X	X	X	X	X	X	X	X	X	X	X	X	X	Option al	Optional topic	
X	X	X	X	X	X	X	X	X	X	X	X	X	X	X	X	Basic	Writing methods (research, letter, thesis)	
X		X	X	X	X	X	X	X	X	X	X		X		X	Basic	Boron Chemistry	Master's / Second Course / Inorganic Chemistry
X	X	X	Х	X	Х	Х	X	X	X	X	X	X	X	X	X	Basic	Crown ethers and their complexes with transition metal ions	
X	X	X	X	X	X	X	X	X	X	X	X	X	X	X	X	Basic	Metal Ions in Biological System	
X	X	X	X	X	X	X	X	X	X	X	X	X	X	X	X	Basic	Electronic spectra of inorganic compounds	
X	K	X	X	X	X	X	X	X	X	X	X	X	X	X	X	option al	Optional topic	
X	X	X	X	X	X	X	X	X	X	X	X				X	Basic	Writing methods (research, letter, thesis)	
X	X	X	X	X	X	X	X	X	X	X	X	X	X	X	X	Basic	Advance corrosion chemistry	Master's / Second Course / Physical Chemistry
X	X	X	X	X	X	X	X	X	X	X	X	X	X	X	X	Basic	Nano identification techniques	

Χ	K	Χ	X	Χ	X	X	Χ	Χ	Χ	X	X	Χ	Χ	X	X	Basic	photochemistry	
																	Advanced	
Χ	X	X	X	Χ	X	Χ	Χ	X	Χ	Х	Χ	X	Χ	X	Х	Basic	Surface phenomena	
																	and heterogeneous	
																	catalysis	
Χ	K	Χ	Χ	Χ	X	Χ	Χ	Х	Χ	X	Χ	X	Χ	Χ	X	option	Optional topic	
																al		
Χ	K	X	X	Χ	X	Χ	Χ	Χ	X	X	Χ	X	Χ	X	X	Basic	Writing methods	
																	(research, letter,	
																	thesis)	

Master's/First Course

Chemistry of Transition elements, representative elements and their compounds

Course Description

This course description provides a concise summary of the main features of the course and the learning outcomes expected of the student, demonstrating whether the student has made the most of ...the learning opportunities available. It must be linked to the programme description

	1 The sector of the sector of the
University of Baghdad - College of Science	1. Educational institution
Department of Chemistry	2. Academic department/center
	*
Chemistry of Transition and Representative Elements and Their	3. Course name/code
Compounds / In-person	
Traditional Lecture + Power Point Lecture	4. Available forms of attendance
First Semester / 2023-2024	5. Semester/year
2 theoretical hours per week	6. Number of study hours (total)
2023 /9 /1	7. Date this description was prepared
	1. Course Objectives
The course aims to study the following main topics: Periodic table.	radii, magnetism, theories (MOT, CFT, VBT,

The course aims to study the following main topics: Periodic table, radii, magnetism, theories (MOT, CFT, VBT, Lewis theory, VSEPER, Werner,), quantum numbers and term symbol, coordination compounds, crystal shapes, effective atomic number rule, organometallic compounds.

1. Course Outcomes, Teaching, Learning and Evaluation Methods

A- Cognitive Objectives A1 The student should be able to identify the basics of inorganic chemistry A2 - Identify advanced inorganic chemistry -A3 -A4

B - Course specific skill objectives B1 - Identify the properties of transitional and representative elements B2 - Identify the theories -B4

Teaching and learning methods

1- Using traditional lectures + Power Point

Using the display screen -2

Using visual aids -3

-A5 -A6

Using drawings on the board -4

Evaluation Methods
1- Written tests
2- Asking inferential questions within the lecture
C- Emotional and value objectives:
C1- Oral and written tests
C2- Reports and homework
Teaching and learning methods
Recording lectures on video and sharing them with students through electronic classes -
Evaluation Methods
Student contribution to discussions –1
Evaluating commitment to attendance -2
Discussing reports -3

				Course s	structure .1
Evaluation method	Teaching method	Unit name/topic	Required learning outcomes	Watches	The week
Written exams and homework	Using the display with the writing on the board	periodic table	The principle by which the periodic table was built up . Classification of the elements, The representative elements, Main transition elements ,Inner transition elements. The electronic configuration of Main and Inner transition elements	2	1
Written exams and homework	Using the display with the writing on the board	periodic table	The properties of the transition elements .The oxidation states ,Covalent and ionic radii, the factors effecting on radii ,the Lanthanide contraction	2	2
Written exams and homework	Using the display with the writing on the board	VSEPR	The VSEPR, hybridization in an inorganic compounds and ions.	2	3
Written exams and homework	Using the display with the writing on the board	Term Symbols	Russell-Sounders Term Symbols for G.S. and Ex. S.	2	4
Written exams and homework	Using the display with the writing on the board	Coordination compounds	Coordination compounds ,historical development, properties,	2	5

			coordination		
			number,		
			nomenclature,		
			isomerisation		
			First exam	2	6
Written exams and homework	Using the display with the writing on the board	Stability constants	Stability constants of coordination compounds .Factors affecting stability of complexes	2	7
Written exams and homework	Using the display with the writing on the board	The carbonyls	The carbonyls and The Effective Atomic Number . The Back-Bonding.	2	8
Written exams and homework	Using the display with the writing on the board	Lewis Theory	Lewis Theory . The Formal Charge and the resonance form	2	9
Written exams and homework	Using the display with the writing on the board	The Valence Bond Theory .	The Valence Bond Theory .	2	10
Written exams and homework	Using the display with the writing on the board	The Crystal Field Theory	The Crystal Field Theory, factors effecting the 10Dq, the high- and low- spin complexes, the Crystal Field Stabilization energy ,the effect of crystal field on Oh,Td and Sq.p. complexes, Jahn- Teller distortion.	2	11
			Second exam	2	12
Written exams and homework	Using the display with the writing on the board	МОТ	The M.O,T., -The orbital symmetry. -The Oh molecular orbitals.	2	13

Written exams and homework	Using the display with the writing on the board	МОТ	The Sq. P. molecular orbitals . -The Td . molecular orbitals	2	14
Written exams and homework	Using the display with the writing on the board	The organometallic compounds	U	2	15

	Infrastructure .2
	1- Required textbooks
1-Whitten, Davis, Peck, Stanely, General chemistry, 7thEd., Brooks/Cole, Thomson, (2003)	2- Main references (sources)
2- Martin van Duin,'BORATE ESTERS: IDENTIFICATION, STRUCTURE, STABILITY, AND CATION COORDINATING ABILITY' Delft University Press, 1986.	
3 -G.L.Miessler and D.A.Tarr , Inorganic chemistry . 2 nd Ed, Prentice Hall, Upper Saddle , River, NJ, (1999)	
4-F.A.Cotton and G.Wilkinson Basic inorganic chemistry.3 rd Ed,Wiley New york, (1995)	
5- N.N.Greenwood and A.Earnshaw , Chemistry of elements, (1999)	
General Inorganic Chemistry	A) Recommended books and references (scientific journals, reports, etc.) B) Electronic references, websites, etc.
.Electronic references were used	A) Recommended books and references (scientific journals, reports, etc.) B) Electronic references, websites, etc.

1. Curriculum development plan

Increasing use of information technology, extracting reliable e-books, and updating vocabulary and curricula to ensure keeping pace with the great development in the world of technology.

Master's/First Course Advanced separation techniques & Thermal Analysis

Course Description

Study the basics of thermal analysis chemistry and advanced separation techniques. Study their importance in .chemical analysis

University of Baghdad	1. Educational institution
College of Science/Chemistry	2. Academic department/center
Thermal Analysis and Advanced Separation Techniques	3. Course name/code
Integrated Online and In-person	4. Available forms of attendance
First Semester 2320-2024	5. Semester/year
30 Hours	6. Number of study hours (total)
2023/9/1	7. Date this description was prepared

Course objectives .8

1- Students are introduced to the basics of thermal analysis chemistry and advanced separation techniques and their importance in chemical analysis is studied.

.Students are taught thermal analysis methods and advanced separation techniques -2

.Students are taught to identify chemicals using thermal analysis methods and advanced separation techniques -3

.Students are introduced to the types of thermal analysis and separation techniques -4

.Students are taught the applications of thermal analysis and advanced separation techniques -5

How to analyze a mixture of materials in the model 6

9. Course Outcomes, Teaching, Learning and Evaluation Methods

A- Cognitive Objectives

A1- Determine the quantity and quality of the material to be analyzed A2- Learn the calculations necessary to know the quantity of the material to be analyzed A3- Teach students to know the correct method for determining the material to be analyzed

B - Program specific skill objectives B1 - Scientific and theoretical education in understanding the foundations and methods of thermal analysis and advanced separation techniques B2 - Scientific convergence between theoretical curricula and practical reality B3 - Finding appropriate statistical and analytical methods in how to identify and analyze chemical materials

Teaching and learning methods

Paper lectures and power point lectures .1

.(Electronic lectures using electronic programs (Google Meet, Google Classroom, Telegram .2

.Examples, questions and weekly discussions during the lecture .3

.Basic and modern scientific books .4

.Conducting seminars for students .5

Evaluation Methods

.Conducting exams through homework to encourage students to read lectures daily .1

.Conducting short exams during the lecture to encourage students to read lectures daily .2

.Conducting continuous monthly exams .3

Reports and research required from the student .4

C- Emotional and value-based objectives

C1- Acquiring solid scientific methods to build the structure and structure of a successful scientific researcher to conduct analyses from a broad scientific point of view

C2- The ability to monitor and collect environmental data for analysis using various analytical devices coupled with inductively coupled plasma spectroscopy and process data using advanced statistical methods

C3- Making the student look at the analysis of environmental samples and process the results from a broad .scientific point of view

Teaching and learning methods

Participation in conferences to highlight students' intellectual skills such as conferences - seminars - courses -11

Conducting various tests among students to develop and highlight their intellectual and research energies -2

Discussing students through research projects of biological, industrial and research importance -3

Teaching all students to publish in journals with a long history of uninterrupted publication and a broad base of -4 subscribers within the general or precise specialization

Teaching on solid software with a high database to teach all students how to check plagiarism, for example -5

Learning how to identify the manifestations of fictitious and non-serious journals -6

(Workshops, periodicals, software and websites -7

Evaluation methods

Teaching all students to publish in journals with a long history of uninterrupted publication and a broad base of subscribers within -1 the general or precise specialization

Teaching on solid software with a high database to teach all students how to check plagiarism, for example -2

Learning how to identify the manifestations of fictitious and non-serious journals -3

D- General and transferable qualification skills (other skills related to employability and personal .(development

D1- Research leadership and publishing in reputable journals

D2- The art of composing and preparing lectures, delivery method and correspondence

D3- Opportunities for developing scientific research in the Arab world

D4- Flexible scientific development in dealing with all analytical and industrial devices, their mechanism of operation, calibration, repair of their faults and components, flexible dealing with these mechanisms and how to use them in wide-ranging analysis

And developing the student's mental abilities - developing skill capabilities and dealing with field and .laboratory environmental measurement devices

				Со	urse structure .10
Evaluation method	Teaching method	Unit name/topic	Required learning outcomes	hours	week
Weekly Exams and Reports	1- Paper lectures Electronic -2 screen	Thermogravimetric Analysis and DTG, Fundamentals, Instrumentation	Thermogravimetric analysis & DTG, principle, Instrumentation	2	First
Weekly Exams and Reports	1- Paper lectures Electronic -2 screen	Differential Thermal Analysis, Fundamentals, Instrumentation	General Differential thermal analysis, principle, Instrumentation	2	Second
Weekly Exams and Reports	1- Paper lectures Electronic -2 screen	Differential Thermal Analysis, Fundamentals, Instrumentation	General Differential thermal analysis, principle, Instrumentation	2	Third
Weekly Exams and Reports	1- Paper lectures Electronic -2 screen	Differential Calorimetry, Fundamentals, Instrumentation	Differential scanning calorimetry , principle , Instrumentation	2	Fourth
Weekly Exams and Reports	1- Paper lectures Electronic -2 screen	DSC (or DTA) and TGA Methodology	Methodology of DSC (or DTA) and TGA	2	Fifth
Weekly Exams and Reports	1- Paper lectures Electronic -2 screen	DSC (or DTA) and TGA Methodology	Methodology of DSC (or DTA) and TGA	2	Sixth
Weekly Exams and Reports	1- Paper lectures Electronic -2 screen	Different Aspects of Thermal Analysis	Examples : different aspects of thermal analysis	2	Seventh
Weekly Exams and Reports	1- Paper lectures Electronic -2 screen	Thermo-Mechanical Analysis, Fundamentals, Instrumentation	Thermomechanical analysis , principle, Instrumentation	2	Eighth
Weekly Exams and Reports	1- Paper lectures Electronic -2 screen	-Electrothermal Analysis	Electrical thermal analysis	2	Ninth
Weekly Exams and Reports	1- Paper lectures Electronic -2 screen	Thermometry, Instrumentation, Methodology and Application	Thermometric titrimetry , Instrumentation , Methodology & application	2	Tenth
Weekly Exams and Reports	1- Paper lectures Electronic -2 screen	High Performance Liquid Chromatography, Principle, Developments,	High Performance Liquid Chromatography, principle, Advances	2	Eleventh

		Instrumentation, Application	,Instrumentation, & application		
Weekly Exams and Reports	1- Paper lectures Electronic -2 screen	High performance liquid chromatography, principle, advances, instrumentation, and application	High Performance Liquid Chromatography, principle, Advances ,Instrumentation, & application	2	Twelfth
Weekly Exams and Reports	1- Paper lectures Electronic -2 screen	High performance liquid chromatography, principle, advances, instrumentation, and application	High Performance Liquid Chromatography , principle , Advances ,Instrumentation , & application	2	Thirteenth
Weekly Exams and Reports	1- Paper lectures Electronic -2 screen	Capillary electrophoresis, fundamentals, advances, instrumentation, and application	Capillary electrophoresis, principle, Advances ,Instrumentation, & application	2	Fourteenth
Weekly Exams and Reports	1- Paper lectures Electronic -2 screen	Capillary electrophoresis, fundamentals, advances, instrumentation, and application	Capillary electrophoresis , principle , Advances ,Instrumentation , & application	2	Fifteenth

	Infrastructure .11
 Fundamentals of analytical chemistry /Skoog and West ,7th ed.,2000 Fundamental of analytical chemistry by Skoog, West, Holler & Crouch, 8th , 2004. Fundamental of analytical chemistry by Skoog, West, Holler & Crouch, 8th , 2007. 	Required textbooks
QUANTITATIVE CHEMICAL ANALYSIS	Main references
Daniel C. Harris	(sources)
Michelson Laboratory	
China Lake, California	
Eighth Edition	
.W	
	Recommended books and references (scientific journals,
	reports, etc.)

Electronic reference websites, e	
websites,	

12. Curriculum development plan

Keeping pace with the developments in the preparation and methods of determining materials in general using thermal analyses and advanced separation techniques.

Master's/First Course Biological membrane and metabolism

Course Description

This course description provides a concise summary of the main features of the course and the learning outcomes expected of the student, demonstrating whether the student has made the most of .the learning opportunities available. It must be linked to the programme description

University of Baghdad / College of Science	1. Educational institution
Department of Chemistry	2. Academic department/center
Biomembranes and Metabolism	3. Course name/code
List of Names	4. Available forms of attendance
First Semester / 2023-2024	5. Semester/year
2 hours per week	6. Number of study hours (total)
2023\9\1	7. Date this description was prepared

1. Course Objectives

The objective of teaching Advanced Biochemistry is to identify metabolic pathways from the perspective of energy .calculations

Linking the metabolic pathways of biomolecules

Studying the harmony and integration in the function of the vital organs of the human body in different nutritional states: in the case of fasting and famine or in the case before and after meals.

Study what happens to energy levels in each nutritional condition

Diseases resulting from a malfunction in the functioning of vital organs

Course outcomes, teaching, learning and assessment methods .3 A- Cognitive objectives A1- Identify the importance of studying energy levels resulting from the oxidation of .biomolecules A2- The importance of integration between vital organs in the body to maintain balanced .energy levels .A3- Identify the types of imbalance in energy levels and the diseases resulting from them A4- The balance between the oxidation process and the storage of biomolecules in the human .body B - Course specific skill objectives B1 - Teaching the student to benefit from the Internet and external sources to extract research .and reports on the subject .B2 - Solving external problems related to the topic B3 - Discussing students within the lecture and asking questions to expand the student's .understanding Teaching and learning methods Approved books Paper lectures Basic scientific books Modern scientific research **Evaluation Methods** Short exams (oral and written) and continuous monthly exams Reports and research required from the student

C- Emotional and value objectives

C1- Communication with students

C2- Reaching scientific thinking and deductive analysis of scientific information

.(D- General and transferable qualification skills (other skills related to employability and personal development

D1- Conducting scientific debates with other universities

D2- Ability to work in government and private pathological analysis laboratories

D3- Ability to gain experience in collecting and analyzing scientific material and giving seminars

ucture .4	Course str				
week	hours	Required learning outcomes	Unit name/topic	Teaching method	Evaluation method
1	2	Biomembranes	Biological membranes	Theoretical	Short exams
2,3,4	2	Carbohydrate metabolic pathways and calculating the energy resulting from their oxidation	Bioenergetics of carbohydrates	Theoretical	Short exams
5,6	2	Fat metabolic pathways and their types and calculating the energy resulting from their oxidation	Metabolic pathways of lipids, Bioenergetics of lipids	Theoretical	Short exams
7	2	Types of protein fats, their synthesis, methods of transport and their function	lipoprotein types, synthesis, transport, and function	Theoretical	Short exams
8	2	Protein metabolism: metabolism of important amino acids	Protein metabolism: metabolism of important amino acid	Theoretical	Exams
9	2	Integration between metabolic pathways	Integration of metabolism	Theoretical	Short exams
10,11	2	The relationship between metabolic pathways and organ function in the human body	Correlation between metabolic pathways and the function of human body organs	Theoretical	Study and seminar exams
12	2	Types of nutritional states	Types of fed state	Theoretical	Short exams
13, 14	2	Functions of vital organs during each type of nutritional state	The function of bio organs during each type of fed state	Theoretical	Exams
15	2	Relationships with clinical diseases	Clinical correlations		

Infrastructure .5 .5

Cample biology, 9th edition 2009. Jane B. Reece, Lisa A Urry, Micheal L. Cain.	1- Required textbooks
Biochemistry, 3th edition 2008. Mathews, Van Holde, Ahern	2- Main references (sources)
Lehninger Principles of Biochemistry, Fourth Edition 2010.	A) Recommended books and references (scientific journals, reports, etc.)
	B) Electronic references, Internet sites

1. Curriculum development plan

Updating the scientific material Using modern technologies

Master's/First Course

Intermediates in organic chemistry mechanisms and stability

Course Description

Study of structures and mechanisms in organic chemistry, knowledge of preparation methods, comparison .between them, and possible resulting compounds

University of Baghdad	1. Educational institution
College of Science / Department of Chemistry	2. Academic department/center
Active Intermediates in Organic Chemistry Mechanisms and Stability	3. Course name/code
Weekly	4. Available forms of attendance
First Semester / 2023-2024	5. Semester/year
45 Hours	6. Number of study hours (total)
1/ 9 /2023	7. Date this description was prepared
1. Course objectives: Teaching graduate students organic chemical reactions and chemical	l structures, knowing the structure of organic

1. Course objectives: Teaching graduate students organic chemical reactions and chemical structures, knowing the structure of organic compounds, and how to explain the mechanism of organic reactions and their practical applications aimed at the scientific development of organic chemistry.

Course outcomes, teaching, learning and assessment methods.9

A- Cognitive objectives A1- Identify the preparation of organic compounds A2- Preparation mechanisms A3- The importance of compounds and their applications

B - Program specific skill objectives

B1 - Teaching the student to benefit from the Internet and external sources to extract research and reports on .the subject

.B2 - Solutions to external problems related to the topic

.B3 - Discussing students within the lecture and asking questions to expand the student's understanding

Teaching and learning methods

Approved books Paper lectures Basic scientific books Modern scientific research

Evaluation methods

Short exams (oral and written) and continuous monthly exams Reports and research required from the student

C- Emotional and value objectives

C1-Communication with students

C2- Reaching scientific thinking and deductive analysis of scientific information

Teaching and learning methods

.Direct explanation and delivery -1

.Using devices to estimate environmental factors -2

.Powerpoint presentation. And the screen -3

Emphasizing the importance of the quality of scientific research and providing the opportunity for all -4 scientists to document the latest scientific studies and discoveries through various sites currently available to our students

Explaining the lecture and discussion. Using presentations and urging the student to observe the working -5 mechanism of all analytical techniques and how to model all models and how to deal with them for the purpose of analysis

Evaluation methods

Daily test and reports -1

Monthly tests -2

Final exams -3

Class discussions or during scientific and social lectures or through the international information network -4 for the purpose of awareness for all scientific student groups and gaining flexibility in delivery and immediate response

D- General and transferable qualification skills (other skills related to employability and personal .(development D1- Conducting scientific debates with other universities

D2- Ability to work in government chemical analysis laboratories

D3- Ability to gain experience in collecting and analyzing scientific material and giving seminars

				(Course structure .10
Evaluation Method	Teaching method	Unit name/topic	Required learning outcomes	hours	Week
Exams	Theoretic al		Reactions & Mechanisms	6	1st & 2nd
Exams	Theoretic al		Chap.1/ Carbacation	6	3rd & 4th
Exams	Theoretic al		Chap.2/ Carbanion	6	5th & 6th
Exams	Theoretic al		Chap.3/ Free radicals	6	7th & 8th
Exams	Theoretic al		Chap.4/α-,β- unsaturated carbonyl compounds	6	9th & 10th
Exams	Theoretic al		Chap.5/ Heterocyclic compounds	6	11th & 12th
Exams	Theoretic al		Chap.6/Poly aromatic hydrocarbons	6	3rd & 14th
			exam	3	15th

11-Infrastructure

1-R.T.Morrisson and Boyd,"Organic chemistry ",6 th	6 Required Textbooks
ed.paramountcommunication company 1992	
2- A.I.Vogel,'Text book of practical organic chemistry',3 rd	
ed.,London1974	
3-J.Balfour,'Indigo ',British Museum Press1998	
Shriner, R.L. Morrillm T.C. Curtin D.Y. and Fuson C., (The systematic	7 Main References (Sources)
identification of organic compounds), John Wile Sonic INC. United state	
;8 th edition 2004	

Silverstein Mr.M.Francis Mx.w.and David J.K.Spectroscopic identification of organic compounds.John Wily &Sonic INC.United	A) Recommended books and references (scientific journals, reports, etc
	.) B) Electronic references, Internet sites

1. Curriculum development plan

Updating the scientific material Using modern technologies

Master's / First Course Quantum chemistry and advance thermodynamics

Course Description

Study of the three basic laws of thermodynamics, conversion of work into thermal energy, isothermal and adiabatic processes, enthalpy and internal energy, spontaneous and non-spontaneous processes, the .entropy and Kipps energy relationship, in addition to the laws of kinetic chemistry

University of Baghdad	1. Educational Institution
College of Science / Department of Chemistry 2. Univ	ersity Department/Center
Quantum chemistry and advance thermodynamics	3. Course Name/Code
Weekly 4. Ava	ailable Attendance Forms
First semester 2023-2024	5. Semester/Year
45 hours 6. Number	er of Study Hours (Total)
2023-9-1 7.1	Date this Description was Prepared

1. Course Objectives

Modern chemistry relies entirely on quantum mechanics to understand the shapes of chemical systems and their interactions. This requires

Getting to know the nature of the kinetic problem in general and the applications of the quantized .eigenvalue equation in its various aspects

As well as getting to know the three basic laws of thermodynamics, conversions of work into thermal energy, isothermal and adiabatic processes, enthalpy and internal energy, spontaneous and non-spontaneous processes, the relationship of entropy and Kipps energy, in addition to the laws of kinetic .chemistry

Learning outcomes, teaching and learning methods and assessment .1 A- Cognitive objectives A1- Identify the effect of metallic elements on biological systems A2- Transport processes and enzyme movement

A3- The effect of the geometric and electronic shape of elements on biological systems A4- Important properties of cofactors in metabolic processes **B-** Objectives Course-specific skills B1- Providing students with the special skills to know the problems that society suffers from, their causes, how they are distributed and the effect of different factors on them, and knowing the most appropriate ways and means to solve .these problems .B2- Providing students with the basic skills to conduct various scientific studies B3- The graduate acquires the knowledge and research skills necessary for his academic and .professional future B4- Graduates of this program are prepared either for academic professions or practical professions in .other ministries outside higher education Teaching and learning methods Using the Google Class platform -1 Preparing reports and homework -2 Using YouTube explanatory videos -3 Using illustrative tools and asking inferential questions -4 **Evaluation methods** Monthly tests -1 Daily tests and discussions -2 Reports and homework -3 C- Emotional and value objectives C1- Acquiring solid scientific methods to build the structure and structure of a successful scientific researcher to conduct analyses from a broad scientific point of view C2- Making the student look at the analysis of environmental samples and process the results from a .broad scientific point of view Teaching and learning methods Using the blackboard and display screen and displaying pictures, drawings and models and bringing illustrative models **Evaluation** methods Monthly and daily written tests, oral discussions, reports, student activity in the lecture and attendance D- General and transferable qualification skills (other skills related to employability and personal .(development D1- Encouraging students to rely on resources and use the library. D2- Using the Internet to increase .knowledge

e structure .10	Course				
week	hours	Required learning outcomes	Unit/Course or Topic Name	Teaching method	Evaluation Method
Fir	3		Chapter One Energy Curve Energy Supersurface	1- Paper lectures -2 Electronic screen	Exams
Secor	3		Energy curve Energy supersurface	1- Paper lectures -2 Electronic screen	Exams
Thi	3		Chapter 2. Review of Classical Mechanics	1- Paper lectures -2 Electronic screen	Exams
Four	3		Chapter 2. Review of Classical Mechanics	1- Paper lectures -2 Electronic screen	Exams
Fif	3		Chapter 3. Old Quantum Theory	1- Paper lectures -2 Electronic screen	Exams
Six	3		Chapter 3. Old Quantum Theory	1- Paper lectures -2 Electronic screen	Exams
Seven	3		Chapter 3. Old Quantum Theory	1- Paper lectures -2 Electronic screen	Evaluation Method
Eigh	3		<u>Chapter 4. Quantum</u> <u>Mechanics</u>	1- Paper lectures -2 Electronic screen	
Nin	3		<u>Chapter 5. Wave</u> <u>Mechanics,</u> <u>Schrödinger's</u> <u>Description of</u> <u>Quantum Mechanics</u>	1- Paper lectures -2 Electronic screen	

1- Paper	Introduction to		Tenth
lectures	Thermodynamic Chemistry		
-2		3	
Electronic			
screen			
1- Paper	Thermodynamic Laws		Eleventh
lectures			
-2		3	
Electronic			
screen			
1- Paper	Gibbs Free Energy +		Twelfth
lectures	Problem Solutions		
-2		3	
Electronic			
screen			
1- Paper	Definition of Kinetic		Thirteenth
lectures	Chemistry		
-2		3	
Electronic			
screen			
1- Paper	Law of Kinetic Chemistry		Fourteenth
lectures			
-2		3	
Electronic			
 screen			
1- Paper	Problem Solutions		Fifteenth
lectures		_	
-2		3	
Electronic			
screen			

		11. Infrastructure
Introduction to Quantum Mechanics by Professor Dr. Muthanna Abdul Jabbar Shanshal		Required Textbooks
Questions and Solutions in Quantum Mechanics by Professor Dr. Rahab Majed Kabba	•	
Essential of physical chemistry BOOK (Arun Bahl, G. D. Tuli) Chemical Thermodynamics .of Materials (Svein Stølen, Neil L. Allan)		Main References (Sources)

Master's / Second Course / Inorganic Chemistry Specialization Metal ions in living system

Course Description

This course description provides a concise summary of the main features of the course and the learning outcomes expected of the student, demonstrating whether the student has made the most of .the learning opportunities available. It must be linked to the programme description

University of Baghdad	1. Educational Institution
College of Science / Department of Chemistry	2. University Department/Center
Metal ions in living system / second semester	3. Course Name/Code
Students' names lists	4. Available Attendance Forms
Second semester 2023-2024	5. Semester/Year
3 hours per week	6. Number of Study Hours (Total)
2023/9/1	7. Date this Description was Prepared

Course objectives .1

Study the basics of organic abiotic chemistry in the field of public health and pharmaceutical chemistry, which is concerned with studying the chemical components of living materials and the .chemical changes that occur during vital processes of metabolism, growth and reproduction Learning outcomes, teaching and learning methods and evaluation .2

A- Knowledge and understanding

A1- Identify the effect of metallic elements on biological systems

A2- Transport processes and enzyme movement

A3- The effect of the geometric and electronic shape of elements on biological systems

A4- Important properties of cofactors in metabolic processes B- Objectives and skills specific to the course

B1- Identify the latest scientific findings in the field of organic abiotic chemistry

Teaching and learning methods

- Use PowerPoint -1
- Prepare reports and homework -2
 - Use the board -3
- Use illustrative means and ask inferential questions -4
 - Evaluation methods
 - Monthly tests -1
 - Daily tests and discussions -2
 - Reports Homework -3

Teaching and learning methods

Using the blackboard and the display screen and displaying pictures, drawings and models and bringing illustrative models

Evaluation methods

Monthly and daily written tests, oral discussions, reports, student activity in the lecture and - attendance

D- General and transferable qualification skills (other skills related to employability and personal .(development

D1- Encouraging students to rely on sources and use the library

D2- Using the Internet for the purpose of increasing knowledge

				Course	e structure .2
Evaluation method	Teaching method	Name of unit/course or topic	Required learning outcomes	Hours	week
Monthly exam, daily exam and discussion within the lecture	Using the whiteboard and PowerPoint	Introduction to Bioinorganic chemistry		3	1
Monthly exam, daily exam and discussion within the lecture	Using the whiteboard and PowerPoint	Role of metal ions in biological systems		3	2
Monthly exam, daily exam and discussion within the lecture	Using the whiteboard and PowerPoint	Essential and trace elements		3	3
Monthly exam, daily exam and discussion within the lecture	Using the whiteboard and PowerPoint	Basic principle and concepts and Thermodynamics complexes stability and site selectivity		3	5-4
Monthly exam, daily exam and discussion within the lecture	Using the whiteboard and PowerPoint	Properties important for catalysis and effect of metal environment created by protein		3	7-6
Monthly exam, daily exam and discussion within the lecture	Using the whiteboard and PowerPoint	Structure of metallo- protein		3	8

			r		
Monthly exam,	Using the	Oxygen carriers		3	9
daily exam and	whiteboard				
discussion	and				
within the	PowerPoint				
lecture					
Monthly exam,	Using the	Inorganic prosthetic		3	10
daily exam and	whiteboard	group			
discussion	and				
within the	PowerPoint				
lecture					
Monthly exam,	Using the	Electron transfer		3	11
daily exam and	whiteboard	chain (cellular			
discussion	and	respiration)			
within the	PowerPoint				
lecture					
Monthly exam,	Using the	Metallo enzyme and		3	13-12
daily exam and	whiteboard	Bohr effect and			
discussion	and	Homeostasis			
within the	PowerPoint				
lecture					
Monthly exam,	Using the	Photosynthesis and		3	15-14
daily exam and	whiteboard	nitrogencycle			
discussion	and				
within the	PowerPoint				
lecture					
					11. Infrastructure
-principles of Bioi	norganic chemi	stry by Stephen		1- Re	equired textbooks
J.Lippard and Jere	-				
1-Metallo cofactors that Activate small Molecules with				2- Main ref	erences (sources)
focus on bioinorganic chemistry structure and bonding					
by Martus W. Eibbe					
•	2- Metallo biomolecules by W.K.B.P.M.weerawarnq				
	3-Modeling bioinorganic chemistry				
www.scm.com	-	-			
L			1		

12. Curriculum development plan

Increasing use of information technology, extracting reliable e-books, and updating vocabulary and curricula to ensure keeping pace with the great development in the world of technology.

Master's / Second Course / Inorganic Chemistry Specialization Bron Chemistry

Course Description

This course description provides a concise summary of the main features of the course and the learning outcomes expected of the student, demonstrating whether the student has made the most of .the learning opportunities available. It must be linked to the programme description

1. Educational institution	University of Baghdad - College of Science
2. Academic department/center	Chemistry Department
3. Course name/code	Boron Chemistry
4. Available forms of attendance	Traditional Lecture + Power Point Lecture
5. Semester/year	Second Semester/ 2023-2024
6. Number of study hours (total)	3 theoretical hours per week
7. Date this description was prepared	2023/9 /1

Course objectives .3

The course aims to study the following main topics: Study of the properties of boron, extraction, isolation and purification of boron, study of boron compounds which include: borides, borines, carborenes, boron halides, boron-oxygen compounds, boron-nitrogen compounds. Study of applications of boron compounds Course outcomes and teaching, learning and assessment methods .1 .A-A Cognitive objectives A1- The student should be able to identify boron chemistry A2- Identify boron compounds and their reactions :B- Program specific skill objectives B1- Identify some of the methods and experiments used to diagnose boron compounds B2- Identify techniques in diagnosing boron compounds descriptively and quantitatively Teaching and learning methods Traditional lecture + Power Point lecture -1 Preparing reports and homework -2 **Evaluation** methods Preparing reports and homework -1 **Examinations** -2 C- Emotional and value objectives **C1-** Discussions C2- Reports and homework

				Course stru	cture .
Evaluation method	Teaching method	Unit Name / or Topic	Required learning outcomes	hours	week
Exams Homework Attendance	Traditional Lecture + Power Point Lecture	Study of Boron Properties	Occurrence and Properties	3	
Exams Homework Attendance	Traditional Lecture + Power Point Lecture	Study of Boron Properties	Occurrence and Properties (continue)	3	
Exams Homework Attendance	Traditional Lecture + Power Point Lecture	Extraction , Isolation and Purification	Extraction of Boron, Isolation and Purification	3	
Exams Homework Attendance	Traditional Lecture + Power Point Lecture	Extraction , Isolation and Purification	Extraction of Boron, Isolation and Purification (continue)	3	
Exams Homework Attendance	Traditional Lecture + Power Point Lecture	Boron compounds	Compounds of Boron a- Borides	3	
Exams Homework Attendance	Traditional Lecture + Power Point Lecture)	Boron compounds	b-Boranes (Boron hydride)	3	
Exams Homework Attendance	Traditional Lecture + Power Point Lecture		exam	3	
Exams Homework Attendance	Traditional Lecture + Power Point Lecture	Boron compounds	Boranes (Boron hydride continue	3	
Exams Homework Attendance	Traditional Lecture + Power Point Lecture	Boron compounds	Boranes (Boron hydride continue	3	
Exams Homework Attendance	Traditional Lecture + Power Point Lecture	Boron compounds Carboranes	c-Carboranes	3	1

Exams Homework Attendance	Traditional Lecture + Power Point Lecture	Boron compounds Boron Halides	d-Boron Halides	3	11
Exams Homework Attendance	Traditional Lecture + Power Point Lecture	e-Boron – Oxygen Compounds	e-Boron – Oxygen Compounds	3	12
Exams Homework Attendance	Traditional Lecture + Power Point Lecture	f-Boron – Nitrogen Compounds	f-Boron – Nitrogen Compounds	3	13
Exams Homework Attendance	Traditional Lecture + Power Point Lecture	Applications	g- other compounds of boron, Uses and Applications	3	14
			exam	3	15

	1. Infrastructure
	1- Required textbooks
1-Whitten,Davis,Peck, Stanely, General chemistry, 7 th Ed., Brooks/ Cole, Thomson, (2003)	2- Main references (sources)
 2- Martin van Duin, 'BORATE ESTERS: IDENTIFICATION, STRUCTURE, STABILITY, AND CATION COORDINATING ABILITY' Delft University Press, 1986. 	
3 -G.L.Miessler and D.A.Tarr , Inorganic chemistry . 2 nd Ed, Prentice Hall, Upper Saddle , River, NJ, (1999)	
4-F.A.Cotton and G.Wilkinson Basic inorganic chemistry.3 rd Ed,Wiley New york, (1995)	

5- N.N.Greenwood and A.Earnshaw , Chemistry of elements, (1999)	
1-Chemistry of elements 2-Chemistry of boron 3-Inorganic chemistry	A) Recommended books and references (scientific journals, reports, etc.) B) Electronic references, websites, etc.
.Electronic references were used	A) Recommended books and references (scientific journals, reports, etc.) B) Electronic references, websites, etc.

1. Curriculum development plan

Increasing use of information technology, extracting reliable e-books, and updating vocabulary and curricula to ensure keeping pace with the great development in the world of technology.

Master's / Second Course Specialization: Inorganic Chemistry Electronic spectra of inorganic compounds

Course Description

Study of the electronic spectra of inorganic complexes, starting with the study of electromagnetic radiation and .its properties, the colours of inorganic compounds and their complexes, and the species responsible for colour

University of Baghdad	1. Educational Institution
College of Science / Department of Chemistry	2. University Department/Center
Electronic spectra of inorganic compounds	3. Course Name/Code
Weekly	4. Available Attendance Forms
Second semester 2023-2024	5. Semester/Year
45 hours	6. Number of Study Hours (Total)
2023/9/1	7. Date this Description was Prepared

Course objectives .1

This semester aims to shed light on the electronic spectra of inorganic complexes, starting with the study of electromagnetic radiation and its properties, the colors of inorganic compounds and their complexes, and the species responsible for color, in addition to studying the selection rules, state symbols, derivation of atomic states, Tanaba-Sokano diagrams for complexes, Oracle diagrams in the octahedral field, and studying infrared .spectra, mass spectra, magnetic properties, and nuclear magnetic resonance spectra

Course Outcomes, Teaching, Learning and Evaluation Methods .9 A- Cognitive Objectives A1- Identify the nature of the bond between ions and ligands A2- Identify the most important techniques used to diagnose complexes spectrally

B- Program Skills Objectives

B1- Apply the approved theories to describe complexes practically B2- Use spectral devices to analyze complexes and interpret their spectra

Teaching and Learning Methods

Paper lectures and power point lectures .1

.(Electronic lectures using electronic programs (Google Meet, Google Classroom, Telegram .2

.Examples, questions and weekly discussions during the lecture .3

.Basic and modern scientific books .4

.Conducting seminars for students .5

Evaluation Methods

.Conducting exams through homework to encourage students to read lectures daily .1

.Conducting short exams during the lecture to encourage students to read the lectures on a daily basis .2

.Conducting continuous monthly exams .3

.Reports and research required from the student .4

C- Emotional and value-based objectives

C1- Acquiring solid scientific methods to build the structure and structure of the successful scientific researcher to conduct analyses from a broad scientific point of view

C2- Making the student look at the analysis of environmental samples and processing the results from a .broad scientific point of view

Teaching and learning methods

Participation in conferences to highlight students' intellectual skills such as conferences - seminars - -1 courses

Conducting various tests among students to develop and highlight their intellectual and research energies -2

Discussing students through research projects of biological, industrial and research importance -3

Teaching all students to publish in journals with a long history of uninterrupted publication and a broad -4 base of subscribers within the general or precise specialization

Teaching on solid software with a high database to teach all students how to check plagiarism, for -5 example

Learning how to identify the manifestations of fictitious and non-serious journals -6

(Workshops, periodicals, software and websites -7

Evaluation methods

Teaching all students to publish in journals with a long history of uninterrupted publication and a broad base of subscribers within the general or precise specialization

Teaching on solid software with a high database to teach all students how to check plagiarism, for -5 example

Learning how to identify the manifestations of fictitious and non-serious journals -6

D - General and transferable qualification skills (other skills related to employability and personal .(development

D1- Research leadership and publishing in reputable journals

D2- The art of composing and preparing lectures, delivery method and correspondence

D3- Opportunities for developing scientific research in the Arab world

D4- Flexible scientific development in dealing with all analytical and industrial devices, their mechanism of operation, calibration, repair of their faults and components, flexible dealing with these mechanisms and how to use them in wide-ranging analysis

And developing the student's mental abilities - Developing skill capabilities and dealing with field and .laboratory environmental measurement devices

				Course	structure.10
Evaluati on method	Teaching method	Name of unit/course or topic	Required learning outcomes	hours	Week
Monthly exam, daily exam and discussion within the lecture	data show and white board	Electronic Spectra of Inorganic Complexes		3	First
Monthly exam, daily exam and discussion within the lecture	data show and white board	Derivation of Atomic States and State Symbols		3	Second
Monthly exam, daily exam and discussion within the lecture	data show and white board	Orcal and Tanabe Sukanno Diagrams for Octahedral Complexes		3	Third
Monthly exam, daily exam and discussion within the lecture	data show and white board	Coordination Theories and Complex Colors		6	Fourth
Monthly exam, daily exam and discussion within the lecture		Tetrahedral Coordination Compounds		3	Fifth

Sixth		Exam	data show	
	6		and white	
			board	
Seventh	3	Magnetic properties of complexes		
Eighth		Mass spectra of inorganic complexes		Monthly
				exam,
	2		data show	daily
	3		and white	exam and
			board	discussion within the
				lecture
Ninth		NMR spectra 1		Monthly
1 (1111)		num specia i		exam,
			data show	daily
	3		and white	exam and
			board	discussion
				within the
				lecture
Tenth		NMR Spectra 2		Monthly
			1.4 1	exam,
	2		data show	daily
	3		and white	exam and discussion
			board	within the
				lecture
Eleventh		Technical and Application Infrared Spectra		Monthly
		of Inorganic Compounds1		exam,
			data show	daily
	3		and white	exam and
			board	discussion
				within the
Twelfth		Technical and Application Infrared Spectra		lecture
i wellui		of Inorganic Compounds2		Monthly exam,
			data show	daily
	6		and white	exam and
			board	discussion
				within the
				lecture
Thirteenth		Applications of Infrared Spectra		
Fourteenth		General Examples and Solutions		Monthly
				exam,
			data show	daily
	3		and white	exam and
			board	discussion
				within the lecture
Fifteenth	3	Exam		lecture
	5			

-principles of Bioinorganic chemistry by Stephen J.Lippard and Jeremy M.BERG	1- Required textbooks
Textbook of inorganic chemistry vol.1,2,3,4,5	
1-Metallo cofactors that Activate small Molecules with focus on bioinorganic chemistry structure and bonding by Martus W. Eibbe 2- Metallo biomolecules by W.K.B.P.M.weerawarnq 3-Modeling bioinorganic chemistry www.scm.com	2- Main references (sources)
	Recommended books and references (scientific journals,
	reports,)
	Electronic references, websites,

12. Curriculum development plan

Increasing use of information technology, extracting reliable e-books, and updating vocabulary and curricula to ensure keeping pace with the great development in the world of technology.

Master's / Second Course Specialization: Inorganic Chemistry Crown ethers and their complexes with transition metals ions

Course Description

Study of the basic concepts and scientific facts of the formation of crown compounds, methods .of interpreting their formation, and preparation of complexes of metal crown ethers

.1 Educational institution	University of Baghdad
.2 Academic department/center	College of Science / Chemistry
.3 Course name/code	Crown ethers and their complexes with transition metal ions
.4 Available forms of attendance	Weekly
.5 Semester/year	Second / 2023-2024
.6 Number of study hours (total)	45 hours
.7 Date this description was prepared	2023\9\1
0 C_{1} 0 1 1 1 1	

.8 Course Objectives

The student learns many basic concepts and scientific facts for the formation of crown compounds.

.The student learns methods for interpreting the formation of complexes for crown ethers

.The student learns how to prepare complexes for metal crown ethers

The student learns to find some extracted and necessary data and analyze them to determine the identity of the .prepared compounds

The student learns some applications to benefit from complexes or crown compounds.

Course Outcomes, Teaching, Learning and Evaluation Methods .9 A- Cognitive Objectives A1- Clarifying the basic concepts and theories on which the chemistry of crown compounds was built or founded through a set of concepts .A2- Acquiring skills in dealing with the problem .A3- Acquiring basic skills as an introduction to building and preparing crown compounds A4- Acquiring theoretical concepts for dealing with data and employing them in pre-prepared software

to obtain information sufficient to reach knowledge of the compounds to be prepared according to scientific foundations B- Course Skill Objectives B1- The ability to think about dealing with the problem according to specific rules by using the creative .and deductive method or method and avoiding the rote and memorization method .B2- Writing scientific reports

B3- Teaching students various techniques

.B4- Preparing chemical materials such as simple crown ether and then the higher composition Teaching and learning methods

Adopt blended learning (direct learning through the use of the board and the display screen in pdf and power point format using multiple programs that ensure fruitful communication between the teacher and .(the student

Evaluation methods

.Readings, self-learning, discussion groups -

.Training and activities in the classroom -

- .Guiding students to some websites to benefit from them to develop capabilities -
- Holding research seminars through which some problems are explained and analyzed and the -

.mechanism for finding solutions to them

.Conducting written tests and oral dialogues in almost every lecture -

.In addition to monthly exams and final exams -

C- Emotional and value objectives

.C1- Enabling students to understand chemistry in all specializations

C2- Enabling students to solve problems related to the analysis, diagnosis and distinction of chemical .compounds

.C3- Enabling students to solve problems related to the intellectual framework of chemistry .A4- Acquiring the skill of dealing ethically with participants in scientific research

Teaching and learning methods

Using teaching methods that develop mental and creative thinking in students, transcending the .(traditional method (memorization and indoctrination

Evaluation methods

.Assigning students to review what is published about the semester topic through the Internet -

Urging students to borrow scientific sources from the department or college library to review the study - .topic

Opening horizons for the student to think about investing the prepared compounds in many fields that - serve the community

D- General and transferable qualification skills (other skills related to employability and personal .(development

D1- Preparing a holder of a higher degree with high mental ability so that he is confident and a decision.maker

D2- Mastering the basic skills of practicing scientific research theoretically and practically in theoretical .chemistry

D3- Writing and evaluating technical reports and scientific papers in a professional manner in the field .of theoretical chemistry

D4- Evaluating the methods and tools based on research and the equipment used in chemistry in all .specializations

			Cour	rse Struct	ure 45
Evaluation Method	Teaching method	Unit name/topic	Require d learning outcom es	hours	week
Exams Homework Attendance	Traditional lecture + power point lecture	History of the formation of crown ethers		3	Firs
Exams Homework Attendance	Traditional lecture + power point lecture	Classification of the structure of crown ethers		3	Second
Exams Homework Attendance	Traditional lecture + power point lecture	Cont.		3	Third
Exams Homework Attendance	Traditional lecture + power point lecture	Properties of crown ethers		3	Fourt
Exams Homework Attendance	Traditional lecture + power point lecture	Cont.		3	Fift
Exams Homework Attendance	Traditional lecture + power point lecture	Methods of preparation of ethers		3	Sixt
Exams Homework Attendance	Traditional lecture + power point lecture	Cont.		3	Sevent
Exams Homework Attendance	Traditional lecture + power point lecture	Naming of ethers		3	Eight
Exams Homework Attendance	Traditional lecture + power point lecture	Cont.		3	Nint
Exams Homework Attendance	Traditional lecture + power point lecture	Applications of crown ethers		3	Tent
Exams Homework Attendance	Traditional lecture + power point lecture	Performing the first monthly exam		3	Elevent
Exams Homework Attendance	Traditional lecture + power point lecture	Complexes of crown ether metals, their preparation		3	Twelft
Exams Homework Attendance	Traditional lecture + power point lecture	Cont.		3	Thirteent

Exams Homework Attendance	Traditional lecture + power point lecture	Stability of crown ethers	3	Fourteenth
Exams Homework Attendance	Traditional lecture + power point lecture	Theoretical studies: The purpose of them Theoretically preparing crown ethers and their complexes	3	Fifteenth

	45 Infrastructure
Inorganic Chemistry, J. E. Huheey, E. A.Keiter, R. L. .1 Keiter,(4th edn.), 1993 Basic Inorganic Chemistry, E. A. Cotton, G. Wilkinson, .2 (3rd edn.) 1995, Wiley interns Edition	45 Required textbooks
1. Inorganic Chemistry, J. E. Huheey, E. A.Keiter, R. L. Keiter,(4th edn.), 1993	46 Main references (sources)
2. Basic Inorganic Chemistry, E. A. Cotton, G. Wilkinson, (3rd edn.) 1995, Wiley interns Edition	A) Recommended books and references (scientific journals, reports, etc.)
Scientific journals, periodicals and research in the specialty.	B) Electronic references, Internet sites.
Websites, Google, YouTube and social media in the specialty.	45 Infrastructure

45 Curriculum Development Plan

- Developing the curriculum content by deleting, adding and replacing according to administrative procedures.

.Using modern teaching methods according to the nature of the subject and the level of learners from time to time -

Using modern assessment tools that the student interacts with and at the same time keeps him away from the -.atmosphere of boredom and repetition

Field visits to some scientific research institutions related to the subject of the curriculum to consolidate what is _______. learned in the semester and to see the methods directly in person

Master's degree / Second course / Physical Chemistry specialization Surface phenomena and heterogeneous catalysis

Course Description

This course description provides a concise summary of the main features of the course and the learning outcomes expected of the student, demonstrating whether the student has made the most of .the learning opportunities available. It must be linked to the programme description

University of Baghdad	1. Educational institution
College of Science / Department of Chemistry	2. Academic department/center
Surface phenomena and heterogeneous catalysis	3. Course name/code
Scientific lecture	4. Available forms of attendance
Second semester 2023-2024	5. Semester/year
3	6. Number of study hours (total)
2023\9\1	7. Date this description was prepared

Course Objectives

Study surface chemistry and adsorption processes that occur on the surface and the mechanics by which materials are adsorbed, as well as study the various auxiliary factors and their role in .increasing the kinetics of the adsorbent

Course Outcomes and Teaching, Learning and Evaluation Methods .6 .A- Cognitive Objectives

A1- Enabling students to gain knowledge and understanding of the intellectual framework of chemistry

A2- Enabling students to gain knowledge and understanding of international chemical standards
 A3- Enabling students to gain knowledge and understanding of the laws of chemistry
 A4- Enabling students to gain knowledge and understanding of the standards of chemical analysis
 A5- Enabling students to gain knowledge and understanding of the law of misuse of chemicals
 A6- Enabling students to gain knowledge and understanding of chemistry systems Enabling
 students to gain knowledge and understanding of chemistry in English

B- Course specific skill objectives

B1- Scientific and practical skills

B2- Recollection and analysis skills

B3- Use and development skills

Evaluation methods

Daily tests with multiple-choice questions for academic subjects

Participation grades for difficult competitive questions for students -

Setting grades for assigned homework -

Qualitative and quantitative practical tests in laboratories -

C- Emotional and value objectives

C- Thinking skills and scientific problem-solving skills

 C1- Enabling students to solve problems related to In the intellectual framework of chemistry Part 2 - Enabling students to solve problems related to international chemistry standards
 Part 3 - Enabling students to solve problems related to the laws of control and quality of chemistry Part 4 - Enabling students to solve problems related to chemistry and in the English language

Teaching and learning methods

Providing students with the basics and additional topics related to the previous educational outcomes of problem-solving skills

Scientific

Solving a set of practical examples by the academic staff -

Asking students during the lecture to solve some scientific issues -

Evaluation methods

Daily exams with multiple-choice questions that require scientific skills -

Daily exams with scientific and practical questions -

Participation grades for competition questions for academic topics -

Setting grades for homework -

Assigning students to do scientific seminars and discuss them -

D - General and transferable qualification skills (other skills related to employability and personal .(development

D1 - Enable students to think and analyze topics related to the intellectual framework and international chemical standards

D2 - Enable students to think and analyze topics related to company laws and chemical audit standards

D3 - Enable students to think and analyze topics related to language systems for importing chemicals

D4 - Enable students to think and analyze topics related to chemistry in English

structure	Course				
Week	hours	Required Learning Outcomes	Unit name/topic	Teaching Method	Evaluation Method
1	3	Surface Chemistry Concepts and Adsorption Mechanisms	Surface chemistry , Adsorption , Type of adsorption , Mechanism of adsorption , Energies of adsorption	Paper Lectures	Daily and Monthly Exams
2	3	Recognize the Potential Curve for Physical and Chemical Adsorption	Potential energy of diagram of adsorption chemisorptions, Localized and non localized adsorption , Type of desorption	Paper Lectures	Daily and Monthly Exams
3	3	Study the Mechanism of Adsorption and Adsorption	Kinetics of adsorption and desorption , Rate of desorption , Factors effecting the extent of adsorption	Paper Lectures	Daily and Monthly Exams
4	3	Isotherm Adsorption	The Langmuir surface balance , Adsorption isotherm , Langmuir adsorption isotherm , Kinetics of surface reaction	Paper Lectures	Daily and Monthly Exams
5	3	Calculate the Surface Area and Study Different Types of Adsorption	BET isotherm , Calculation the surface area of the adsorbent , Temkin adsorption isotherm , Dubinin – radushkevich isotherm	Paper Lectures	Daily and Monthly Exams
6	3	Types of Surfaces Used in Adsorption Study	Type of adsorbents , Surfaces used for study the adsopting , adsorption from	Paper Lectures	Daily and Monthly Exams

		solution, Heat of adsorption			
Daily and Monthly Exams	Paper Lectures	Thermal desorption spectra , Apparatus using for study the desorption , Incorporation , Isotope exchange, Applications of adsorption	Thermal Adsorption Spectrum and Devices Used in the Adsorption Process	3	7
Daily and Monthly Exams	Paper Lectures	Kinetics modeling , Adsorption thermodynamics	Thermodynamics and Kinetics of Adsorption	3	8
Daily and Monthly Exams	Paper Lectures	Techniques used for the characterization of surfaces, a/ Photo emission spectroscopy, b/ Secondary – ion mass spectrometry	Techniques Used in Surface Diagnosis	3	9
Daily and Monthly Exams	Paper Lectures	Low – energy electron diffraction , Electrical conductivity	Low Energy Electron Deflection	3	10
Daily and Monthly Exams	Paper Lectures	Catalysis, Characteristics of catalysis, Classification of solid catalysts	Study of Catalysts, Their Properties and Classification	3	11
Daily and Monthly Exams	Paper Lectures	The specific nature of heterogeneous , Type of crystal defects	Specificity of Heterogeneous Catalysts and Study of Crystalline Defects	3	12
Daily and Monthly Exams	Paper Lectures	Type of catalysis , Heterogeneous catalysis , Stepwise mechanism of surface reaction	Types of Heterogeneous Catalysts	3	13
Daily and Monthly Exams	Paper Lectures	Theory of catalysis , Inhibition by products , Active centers , Poisoning of catalysts , 1/ Sintering , 2/ Fouling , 3/	Adsorption Theories	3	14

		promoter , 4/ supports					
Evaluation Method	1	chemisorptions and catalysis by metals , Kinetics of catalyzed reactions , Orders of reactions	Kinetic catalyzed n and stu reaction	reactions dy of	3	15	
					1. Infrastru	cture	
Gre 2. I	 Adsorption, Surface area, and porosity Gregg, S.J. and Sing, K.S.W Heterogeneous Catalysis principles and applications G.C.Bond 				1	- Required textb	vooks
						ments (including periodicals, soft and web	ware,
S	Student participation in continuing education lectures online					cluding, for exan nal training, and stu	
	YouTube, Google) Electronic refe	erences, website	s,

1. Curriculum development plan

Study of surface chemistry, adsorption processes occurring on the surface, and the mechanics by which materials are adsorbed, as well as study of various auxiliary factors and their role in increasing adsorption kinetics.

Master's / Second Course Specialization: Physical Chemistry Nano identification techniques

Course Description

definition and the properties of the nanomaterials, the classification of the nanomaterials, the preparation methodologies of the nanomaterials in addition to the identification and the characterization of the nanomaterials.

University of Baghdad	1. Educational institution
College of Science / Department of Chemistry	2. Academic department/center
Nano Detection Technologies	3. Course name/code
Weekly	4. Available forms of attendance
Second Semester / 2023-2024	5. Semester/year
45 Hours	6. Number of study hours (total)
	7. Date this description was prepared
2023\9\1	

Course objectives .8

Going through the elements of a new branch in chemistry namely as nano-chemistry; which is considered as the one of the main science that the nanotechnology is based on. These elements may include: the definition and the properties of the nanomaterials, the classification of the nanomaterials, the preparation methodologies of the nanomaterials in addition to the identification and the characterization of the nanomaterials. The bespoke elements also include a general look at the most important applications of the nanomaterials .which nowadays profoundly has involved in every single sector of human being sciences

Course outcomes, teaching, learning and assessment methods .9 .A-A Cognitive objectives .A1- Enabling students to gain knowledge and understanding of chemistry in all its precise specializations .A2- Enabling students to gain knowledge and understanding of the chemical structures of compounds A3- - Enabling students to gain knowledge and understanding of the mechanics of chemical reactions and .methods of detection and diagnosis .A4- Enabling students to gain knowledge and understanding of practical experiments .A5- Striving to prepare scientists and researchers with scientific and laboratory skills of a research nature A5- Providing educational programs that keep pace with technical development and conducting solid .scientific research and studies

.A6- Interacting with scientific and technical experiments and experiences in a way that serves society .A7- Establishing research projects that provide solutions to society's problems

:B - Program specific skill objectives

B 1 - Providing students with the special skills to know the problems that society suffers from, their causes, how they are distributed and the impact of different factors on them, and knowing the most appropriate .ways and means to solve these problems

.B 2 - Providing students with the basic skills to conduct various scientific studies

B 3 - The graduate acquires the knowledge and research skills necessary for his academic and professional .future

B 4 - Graduates of this program are prepared either for academic professions or practical professions in .other ministries outside of higher education

Teaching and learning methods

.Lecture method and use of the interactive whiteboard -1

.Explanation and clarification -2

Providing students with the basics and additional topics related to the outputs of thinking and chemical -3 .analysis for various chemical specializations

.Forming discussion groups during lectures to discuss chemistry topics that require thinking and analysis -4 Asking students a set of mental questions during lectures such as what, how, when and why for specific -5

.topics

.Giving students homework that requires self-explanations in causal ways -6

Evaluation methods

Research evaluation -1

.Theoretical tests -2

.Reports and studies -3

.Daily exams with self-solved questions -4

.Grades specified by homework -5

.Final exam -6

.Comprehensive exam -7

:C- Emotional and value-based objectives

.C1- Enabling students to understand chemistry in all specializations

C2- Enabling students to solve problems related to the analysis, diagnosis and discrimination of chemical .compounds

.C3- Enabling students to solve problems related to the intellectual framework of chemistry

.C4- Acquiring the skill of dealing ethically with participants in scientific research

.C5- Creating scientific competencies characterized by professionalism, transparency, honesty and integrity

Teaching and learning methods

.Lecture method and use of interactive whiteboard -1

.Explanation and clarification -2

Providing students with the basics and additional topics related to the outputs of thinking and chemical -3 .analysis

.Forming discussion groups during lectures to discuss chemistry topics that require thinking and analysis -4 Asking students a set of mental questions during lectures such as what, how, when and why for specific -5 .topics

.Giving students homework that requires self-explanations in causal ways -6

Evaluation methods

.Evaluating the student's performance during the lecture -1

.Evaluating the student's performance during the field research as part of the practical evaluation -2

- .Short exams during the semester -3
- .Theoretical evaluation exam for the middle and end of the semester -4
 - .Comprehensive exam -5

.Scientific discussion of the doctoral student's thesis -6

D- General and transferable qualification skills (other skills related to employability and personal .(development

.D1- Preparing a graduate with a high mental capacity to be confident and make decisions

D2- Mastering the basic skills of practicing scientific research theoretically and practically in theoretical .chemistry

D3- Writing and evaluating technical reports and scientific papers in a professional manner in the field of .theoretical chemistry

.D4- Evaluating research-based methods, tools and equipment used in chemistry in all specializations .D5- Applying the analytical approach and using it in the field of theoretical chemistry

D5- Applying specialized knowledge in theoretical chemistry and integrating it with related knowledge in .his professional practice

.D6- Optimizing the use of scientific tools, equipment and resources in development and preservation .D7- Demonstrating awareness of current problems and modern visions in the field of theoretical chemistry .D8- Identifying professional problems and finding solutions to them

D9- Mastering an appropriate range of professional skills in the field of theoretical chemistry, and using .appropriate technological means to serve his professional practice

.D10- Communicating effectively and being able to lead work teams

.D11- Making decisions in different professional contexts

.D12- Employing available resources to achieve the highest benefit and preserving them

D13- Demonstrate awareness of his role in developing society and preserving the environment in light of .global and regional changes

.D14- Manage time efficiently

D15- Act in a manner that reflects commitment to integrity, credibility and adherence to the rules of the .profession in the field of theoretical chemistry

D16- Develop himself academically and professionally and be able to learn continuously in the field of .theoretical chemistry

Course structure					ure .10
Evaluatio n Method	Teach ing metho d	Unit name/topic	Required learning outcomes	hours	Week
Daily and Monthly Exams and Seminar	Power point	nanochemistry	Concepts of nanochemistry Definitions, classifications, properties, preparation approaches Applications, Historical events	6	1-2
Daily and Monthly Exams and Seminar	Power point		Introduction to the nano identification techniques	6	4-3
Daily and Monthly Exams and Seminar	Power point		x - ray diffraction (XRD)	6	6-5
Daily and Monthly Exams and Seminar	Power point		Electron microscopy (EM) A-scanning electron microscopy (SEM) Components, types of detectors B-transmission electron microscopy (TEM)	6	8-7
Daily and Monthly Exams and Seminar	Power point		scanning probe microscopy (SPM) A-Atomic force microscopy (AFM) Types of tips, Contact mode, tapping mode B-scanning tunneling microscopy (STM)	6	10-9
Daily and Monthly Exams and Seminar	Power point		Nano Indentation	6	12-11
Daily and Monthly Exams and Seminar	Power point		Image processing software (Image	3	14-13

Evaluatio Powe n Method poin		Exam	3	15
---------------------------------	--	------	---	----

	11. Infrastructure
	1- Required textbooks
Concept of nanochemistry By ;Ludovico -1 Cademartiri and Geoffrey A. Ozin Nanomaterials and Nanochemistry By; C2 Br'echignac P. Houdy M. Lahmani Nanoparticles From Theory to Application by -3 :Gunter Schmid	2- Main references (sources)
	3- Recommended books and references (scientific journals, reports,)
	4- Electronic references, Internet sites

12. Curriculum development plan
Updating the scientific material Using modern technologies

Master / Second Course Specialization: Physical Chemistry Corrosion Chemistry

Course Description

This course description provides a concise summary of the main features of the course and the learning outcomes expected of the student, demonstrating whether the student has made the ...most of the learning opportunities available. It must be linked to the program description

University of Baghdad / College of Science	1. Educational institution
Chemistry Department	2. Academic department/center
Corrosion Chemistry / Master / Second Course	3. Course name/code
Electronic Name Lists	4. Available forms of attendance
First Semester / 2023-2024	5. Semester/year
3 Theoretical Hours Weekly	6. Number of study hours (total)
1 /9 /2023	7. Date this description was prepared

Course objectives

The course aims to: identify the types of corrosion, methods of reducing it, methods of estimating it, and .1 modern techniques used in measurement and identifying the negative and positive conditions capable of affecting corrosion rates. 2. Course Outcomes, Teaching, Learning and Evaluation Methods A- Cognitive Objectives A1- Types of alloys and how to improve their resistance A2- Understanding the types of polarization and the factors affecting each type A3- Using organic and organic inhibitors A4- Understanding the negative state of metals used in industry A5- Understanding the related electrical theories A6- Studying corrosion thermodynamics **B-** Course Skill Objectives **B1-** Reducing corrosion B2- Guessing which alloys are suitable for each solution according to the Burbex curves B3- Choosing the appropriate conditions of temperature and stirring speed B4- Identifying inhibitors of their types and which one is most appropriate Teaching and learning methods .Explanations through curves and mathematical functions Approved books Paper lectures

Basic scientific books
Modern scientific research
Evaluation methods
Short exams (oral and written) and continuous monthly exams
Reports and research required from the student
C-Emotional and value objectives
C1- Thinking about the causes of corrosion
C2- Determining the optimal conditions for increasing the life of the structure
C3- Choosing the appropriate way to reduce corrosion
D- General and transferable qualification skills (other skills related to employability and personal
.(development
D1- Conducting scientific debates with other universities
D2- Ability to gain experience in collecting and analyzing scientific material and giving seminars

Week	hours	Required Learning Outcomes	Name of unit/course or topic	Teaching method	Evaluation Method
First week	3	Causes of Corrosion	Electrochemical Aspect. Electrochemical reactions & corrosion	Power point	Daily and Monthly Exams and Seminar
Second week	3	Polarization and Negativity	Polarization &passivity	Power point	Daily and Monthly Exams and Seminar
Third week	3	Effects on Corrosion Rate	-Environment effects -Effect of oxygen & oxidizers	Power point	Daily and Monthly Exams and Seminar
Fourth week	3	Effects on Corrosion Rate	Effect of velocity & temperature -Galvanic coupling	Power point	Daily and Monthly Exams and Seminar
Fifth and sixth week	3	Mining	-Metallurgical aspects -EMF &galvanic series	Power point	Daily and Monthly Exams and Seminar
Seventh and eighth week	3	Electromotive Force Table	-Autocatalytic nature of pitting	Power point	Daily and Monthly

Γ

Course structure .5

Exams and Seminar		-Methods of prevention			
Daily and Monthly Exams and Seminar	Power point	-Carbon steel , Iron & Stainless steel -Inhibitors classification	Pitting Corrosion and Methods of Measuring It	3	Week 9
Daily and Monthly Exams and Seminar	Power point	-Cathodic and anodic protection -coating classification	Types of Steel	3	Week 10 Week 11
Daily and Monthly Exams and Seminar	Power point	Modern theory & application – Corrosion Rate	Classification of Inhibitors	3	Week 12 Week 13
Evaluation Method	Power point	measurements Tafel extrapolation & Linear polarization -Compensations effect	Mechanism of Action of Each Inhibitor	3	Week 14 Week 15

	1. Infrastructure
Physical Chemistry text book	1- Required textbooks
	2- Main references (sources)
Modern Electrochemistry	a) Recommended books and references (scientific journals, reports,)
	b) Electronic references, Internet sites

1. Curriculum development plan
Updating the scientific material Using modern technologies

Master's / Second Course

Specialization: Physical Chemistry Avanced photochemistry

Course Description

Study of biological interactions in living organisms and natural phenomena such as photosynthesis, the effect of light on genetic factors, and the conversion and preservation of solar . .energy

University of Baghdad
College of Science / Department of Chemistry
Advanced Photochemistry
Weekly
Second Semester 2023-2024
45 Hours
1\9\2023
ry ly 24 urs

.Understanding biological reactions in living organisms -1

.Understanding many natural phenomena such as the phenomenon of photosynthesis -2

. The effect of light on genetic factors -3

.Converting and storing solar energy -4

9. Course outcomes, teaching, learning and assessment methods. .A-A Cognitive objectives

.A-A Cognitive objectives

A1- Enabling students to gain knowledge and understanding of chemistry in all its precise specializations
 A2- Enabling students to gain knowledge and understanding of the chemical structures of compounds
 A3- - Enabling students to gain knowledge and understanding of the mechanics of chemical reactions and .methods of detection and diagnosis

.A4- Enabling students to gain knowledge and understanding of practical experiments

.A5- Striving to prepare scientists and researchers with scientific and laboratory skills of a research nature A5- Providing educational programs that keep pace with technical development and conducting solid .scientific research and studies

.A6- Interacting with scientific and technical experiments and experiences in a way that serves society .A7- Establishing research projects that provide solutions to society's problems

:B - Program specific skill objectives B 1 - Providing students with the special skills to know the problems that society suffers from, their causes, how they are distributed and the impact of different factors on them, and knowing the most .appropriate ways and means to solve these problems .B 2 - Providing students with the basic skills to conduct various scientific studies B 3 - The graduate acquires the knowledge and research skills necessary for his academic and .professional future B 4 - Graduates of this program are prepared either for academic professions or practical professions in .other ministries outside of higher education Teaching and learning methods .Lecture method and use of the interactive whiteboard -1 .Explanation and clarification -2 Providing students with the basics and additional topics related to the outputs of thinking and chemical -3 .analysis for various chemical specializations Forming discussion groups during lectures to discuss chemistry topics that require thinking and -4 .analysis Asking students a set of mental questions during lectures such as what, how, when and why for -5 .specific topics .Giving students homework that requires self-explanations in causal ways -6 **Evaluation** methods Research evaluation -1 .Theoretical tests -2 .Reports and studies -3 .Daily exams with self-solved questions -4 .Grades specified by homework -5 .Final exam -6 .Comprehensive exam -7 :C- Emotional and value-based objectives .C1- Enabling students to understand chemistry in all specializations C2- Enabling students to solve problems related to the analysis, diagnosis and discrimination of chemical .compounds .C3- Enabling students to solve problems related to the intellectual framework of chemistry .C4- Acquiring the skill of dealing ethically with participants in scientific research C5- Creating scientific competencies characterized by professionalism, transparency, honesty and .integrity Teaching and learning methods .Lecture method and use of interactive whiteboard -1 .Explanation and clarification -2 Providing students with the basics and additional topics related to the outputs of thinking and chemical -3 .analysis

Forming discussion groups during lectures to discuss chemistry topics that require thinking and -4 .analysis

Asking students a set of mental questions during lectures such as what, how, when and why for -5 .specific topics

.Giving students homework that requires self-explanations in causal ways -6 Evaluation methods

.Evaluating the student's performance during the lecture -1

.Evaluating the student's performance during the field research as part of the practical evaluation -2

.Short exams during the semester -3

.Theoretical evaluation exam for the middle and end of the semester -4

.Comprehensive exam -5

.Scientific discussion of the doctoral student's thesis -6

D- General and transferable qualification skills (other skills related to employability and personal .(development

.D1- Preparing a graduate with a high mental capacity to be confident and make decisions

D2- Mastering the basic skills of practicing scientific research theoretically and practically in theoretical .chemistry

D3- Writing and evaluating technical reports and scientific papers in a professional manner in the field of .theoretical chemistry

.D4- Evaluating research-based methods, tools and equipment used in chemistry in all specializations .D5- Applying the analytical approach and using it in the field of theoretical chemistry

D5- Applying specialized knowledge in theoretical chemistry and integrating it with related knowledge in .his professional practice

.D6- Optimizing the use of scientific tools, equipment and resources in development and preservation D7- Demonstrating awareness of current problems and modern visions in the field of theoretical .chemistry

.D8- Identifying professional problems and finding solutions to them

D9- Mastering an appropriate range of professional skills in the field of theoretical chemistry, and using .appropriate technological means to serve his professional practice

.D10- Communicating effectively and being able to lead work teams

.D11- Making decisions in different professional contexts

.D12- Employing available resources to achieve the highest benefit and preserving them

D13- Demonstrate awareness of his role in developing society and preserving the environment in light of .global and regional changes

.D14- Manage time efficiently

D15- Act in a manner that reflects commitment to integrity, credibility and adherence to the rules of the .profession in the field of theoretical chemistry

D16- Develop himself academically and professionally and be able to learn continuously in the field of .theoretical chemistry

Course structure.1					
Evaluat ion method	Teach ing metho d	Unit name/topic	Required learning outcomes	hours	week
Daily and monthly exams and seminars	Power point	. Introduction	Theory Spectroscopy	3	1
Daily and monthly exams and seminars	Power point		Classification of methods Type of radiation energy	3	2
Daily and monthly exams and seminars	Power point		Regions of the spectrum Spectral parametars and their units	6	4-3
Daily and monthly exams and seminars	Power point		. Energy of radiation Nature of the interaction	3	5
Daily and monthly exams and seminars	Power point		What happens when radiation hits a molecule	3	6
Daily and monthly exams and seminars	Power point		Scattering Absorption	3	7
Daily and monthly exams and seminars	Power point		Type of material (atoms, molecules, crystals and extended materials, nuclei) Applications and history. Photochemistry Definition	3	8
Daily and monthly exams and seminars	Power point		Nature of light (the wave theory, the quantum theory) Laws of absorption of light Draper and Grothus law.	3	9
Daily and monthly exams and seminars	Power point		Stark and Einstein Lamberts Beers law. Quantum yields of photochemical reactions. The characteristics of electronic transitions	3	10

Daily and monthly exams and seminars	Power point	The Frank – Condon principles, and Frank – Condon factors. Specific types of transition – d transition. Vibronic transitions.	3	11
Daily and monthly exams and seminars	Power point	Charge transfer transitions transitions. The fates of electronically excited states.	3	12
Daily and monthly exams and seminars	Power point	Dissociation and pre- dissociation. Ionization. . Luminescence; re-emission of photon.	3	13
Daily and monthly exams and seminars	Power point	Flourescence. Phosphorescence. Intra and inter – molecular energy transfer. Quenching and sensitization.	3	14
Daily and monthly exams and seminars	Power point	Exam	3	15

	11. Infrastructure
Spectrum - 1985 Written by Dr. Laila Mohammed -1	1- Required textbooks
Foundations of Photochemistry and Lasers - 2002 -2	
Written by Dr. Ali Abdul Hussein	
Physical Chemistry - Photochemistry - 1986 Written -3	
by Dr. Ali Abdul Hussein and Dr. Safaa Al-Omar	
	2- Main references (sources)
Photochemistry by R.B.Cundall and A -1	
.Gilbert,1970	
Principles of Photochemistry by P.Snppun – -2	
London : The Chemical Society , 1973	
	3- Recommended books and references
	(scientific journals, reports,)
	4- Electronic references, Internet sites

12. Curriculum development plan
Updating the scientific material Using modern technologies

Master's / Second Course Specialization: Organic Chemistry Chemistry of the Sulfur

Course Description

Study of structures and mechanics in organic chemistry, knowledge of preparation methods, comparison .between them, and the possible resulting compounds

1. Educational institution	University of Baghdad
-	College of Science / Department of Chemistry
	Chemistry of the Sulfur
4. Available forms of attendance	Weekly
5. Semester/year	First Semester / 2024-2023
6. Number of study hours (total)	45 hours
7. Date this description was prepared	1 /9 /2023

Course objectives .1

The aim of teaching the subject of Structures and Mechanics in Organic Chemistry is to know the methods of preparation and comparison between them and the possible resulting compounds from them

As well as studying the different types of compounds and studying the proposed mechanics for each type Methods used to diagnose organic compounds

Course outcomes and teaching, learning and evaluation methods .1

A- Cognitive objectives

A1- Identify the preparation of organic compounds

A2- Preparation mechanics

A3- The importance of compounds and their applications

B- Course skill objectives

B1- Teaching the student to benefit from the Internet and external sources to extract research and reports on .the subject

.B2- Solutions to external problems related to the topic

.B3- Discussing students within the lecture and asking questions to expand the student's understanding

Teaching and learning methods

Approved books

Paper lectures

Basic scientific books

Modern scientific research

Evaluation methods

Short exams (oral and written) and continuous monthly exams

- Reports and research required from the student
- C- Emotional and value goals
- C1- Communication with students

C2- Reaching scientific thinking and deductive analysis of scientific information

D- General and transferable qualification skills (other skills related to employability and personal .(development

D1- Conducting scientific debates with other universities

D2- Ability to work in government chemical analysis laboratories

D3- Ability to gain experience in collecting and analyzing scientific material and giving seminars

				Course stru	cture .1
Evaluati on method	Teaching method	Unit name/topic	Required learning outcomes	hours	week
Exams	Theoretical	Thiols compounds	Types of thiol compounds	3	First
Exams	Theoretical	Thiols compounds synthesis	Methods of preparing thiol compounds	3	Second
Exams	Theoretical	Thiols compounds mechanisms	Mechanics of preparing thiol compounds	3	Third
Exams	Theoretical	Thiols compounds identifications	Methods of diagnosis	3	Fourth
Exams	Theoretical	Sulfide compounds	Types of sulfide compounds and methods of preparation	3	Fifth
Exams	Theoretical	Sulfide compounds mechanism	Mechanics of preparing sulfide compounds	3	Sixth
Exams	Theoretical	Sulfoxides compounds	Methods of preparing sulfoxide compounds	3	Seventh
Exams	Theoretical	Sulfoxides compounds	Mechanics of preparing them	3	Eighth
Exams	Theoretical	Sulfoxides compounds	Diagnosis	3	Ninth
Exams	Theoretical	Sulfones compoundes synthesis	Types of sulfonate compounds	3	Tenth
Exams	Theoretical	Sulfones compoundes mechanism	Mechanics of preparing them	3	Eleventh
Exams	Theoretical	Sulfones compoundes identification	Diagnosis	3	Twelfth
Exams	Theoretical	Sulfonum compounds synthesis	Sulfonium compounds	3	Thirteenth
Exams	Theoretical	Sulfonum compounds mechanism	Mechanics of preparing them	3	Fourteenth
			Semester exam		Fifteenth

	1. Infrastructure
	6 Required textbooks
Mechanism and structure in organic chemistry Edwin S .Gould	7 Main references (sources)
A Guide to the Mechanism of Organic Reactions Dr. Fadhel Suleiman Kamouna	a) Recommended books and references (scientific journals, reports, etc.)
	b) Electronic references, websites

1. Curriculum development plan
Updating the scientific material Using modern technologies

Master's / Second Course / Organic Chemistry Natural products chemistry

Course Description

This course description provides a concise summary of the main features of the course and the learning outcomes expected of the student, demonstrating whether the student has made the most of the available learning opportunities. It must be linked to the programme .description

1. Educational institution	University of Baghdad - College of Science - Department of Chemistry
2. Academic department/center	Department of Chemistry
3. Course name/code	Natural products chemistry
4. Available forms of attendance	Natural products chemistry - Postgraduate studies - Master's
5. Semester/year	Electronic presence
6. Number of study hours (total)	2024-2023
7. Date this description was prepared	45 hours, three hours per week

.Course objectives:

studying their .1 Teaching postgraduate students the basics and concepts of chemistry, natural products, formation and mechanisms of reactions in nature, the foundations and methods of their isolation, as well as studying the stereochemistry of natural product compounds. Opening new horizons by presenting some concepts in new and innovative ways by making students interact with them to increase their knowledge of textbooks and assistance. With the presence of video lectures, the student experiences a traditional lecture environment with the same discussion methods by asking questions and the professor answering, ensuring the integration of the foundations of a successful lecture

Course Outcomes, Teaching, Learning and Evaluation Methods .1

A- Cognitive Objectives

A1- To achieve a good understanding of the academic content of the subject of organic chemistry
 A2- To prepare the student to comprehend and prepare for the topics in the subsequent stages
 A3- To teach and train the student to solve the exercises by following a special mechanism
 A4- To instill confidence in the students and encourage them to engage in the principle of
 .dialogue and useful discussion

A5- Allowing students to suggest new methods and ideas that help them understand difficult topics

A6- Helping students by conducting short exams outside the time allocated for the lecture B- Course specific skill objectives

B1- The ability to find solutions and derive ideas for various issues and mechanics

B2- Encouraging students to read and follow up by conducting electronic and video meetings B3- Helping students by using important electronic programs that facilitate their understanding of the material

B4- Also helping them in terms of teaching them some electronic programs that facilitate the process of conducting electronic exams

Teaching and learning methods

Modern methods were used in education, including video and audio lectures SCREEN RECORDER and attaching audio and video files to the Google Classroom program and using electronic programs to meet students directly such as Google Meet, ZOOM, FCC, WEBAX, and others to .facilitate the task of teaching students and their understanding of the material Evaluation Methods

Short exams were conducted and homework assignments were given, as well as monthly exams with a pre-set date, as well as writing reports on organic chemistry and the topics that were given

C- Emotional and value objectives

C1- The student understands the university behavior that must be demonstrated

C2- Cultivating a spirit of cooperation among students, by the learner providing assistance to his friends in the classroom or doing group work in the classroom

C3- Developing some interests and hobbies among students

C4- Sensing the harms of smoking and drugs on health and society

Teaching and learning methods

Modern methods were used in education, including video and audio lectures SCREEN RECORDER and attaching audio and video files to the Google Classroom program and using electronic programs to meet students directly such as Google Meet, ZOOM, FCC, WEBAX, and others to facilitate the task of teaching students and their understanding of the material

Evaluation Methods

Short exams were conducted and homework assignments were given ASSIGNMENTS As well as conducting monthly exams with a pre-determined date, as well as writing reports on organic .chemistry and the topics that were given

D - General and transferable qualification skills (other skills related to employability and personal .(development

D1-- Working on developing a distinguished personality for the student by developing cultural .and social awareness, which qualifies him after graduation to serve the community

D2-- Working on creating a suitable scientific environment for preparing highly specialized cadres .while developing their scientific and practical capabilities

D3- Communicating with graduate students to know the lessons they benefited from in their field .of work to work on developing the vocabulary of these lessons

D4- Using the sources and terms specific to the course

Course structure .1					
Evaluation method	Teaching method	Unit name/topic	Required learning outcomes	hours	week
Short exams, monthly exams and oral discussions	Electronic - Visual video lectures	Chemistry of natural products	Purification, isolation of natural products	3	1
Short exams, monthly exams and oral discussions	Electronic - Visual video lectures	Chemistry of natural products	Terpenes: sesquiterpenes	3	1
Short exams, monthly exams and oral discussions	Electronic - Visual video lectures	Chemistry of natural products	monoterpenes	3	1
Short exams, monthly exams and oral discussions	Electronic - Visual video lectures	Chemistry of natural products	Diterpenes and sesterterpenes	3	1
Short exams, monthly exams and oral discussions	Electronic - Visual video lectures	Chemistry of natural products	alkaloids	3	1

	1. Infrastructure
Medicinal chemistry of natural products, Paul S.	1- Required textbooks
Comprehensive of natural products , Christenson J.	2- Main references (sources)
-Principles of organic chemistry, Salmon -Organic letters, UK reports	a) Recommended books and references (scientific journals, reports,)
https://ar.wikipedia.org/wiki/%D9%83%D9%8A%D9%8 <u>5%D9%8A%D8%A7%D8</u>	b) Electronic references, websites,

1. Curriculum development plan

- Adding illustrative tools, especially when explaining the stereochemistry of organic compounds that contain asymmetric carbon atoms

Using electronic simulations of some typical videos published on sites such as YouTube and others, and benefiting – from the global experiences that preceded the use of e-learning and blended learning

Master's / Second Course sterochemistery Specialization: Organic Chemistry

Course Description

This course covers the concepts of (sterochemistry). One of the options below is chosen .according to the subject specialization and the rest is deleted

University of Baghdad	Educational Institution
College of Science / Department of Biotechnology	Department/Center
Stereochemistry	Course Name/Code
Weekly	Available Attendance Forms
Second Semester 2023-2024	Semester/Year
45 hours	Number of Study Hours (Total)
1\9\2023	Date of Preparation of this Description

Course objectives

A- Expanding students' awareness to learn about modern technologies adopted globally. B-Contributing to preparing students' sound scientific thinking to solve obstacles in the fields of scientific research. C- Providing the labor market with graduates with experience and competence in the applied fields of biotechnology. Course outcomes, teaching, learning and evaluation methods. Cognitive objectives. A1- Enabling students to gain knowledge and understanding of the intellectual framework of the foundations and applications of biotechnology A2- Enabling students to gain knowledge and understanding of industrial, pharmaceutical and food stereochemistry

- :B- Program specific skill objectives
- B1- Scientific and practical skills
- B2- Recall and analysis skills
- B3- Use and development skills

Teaching and learning methods

:Providing students with the basics and topics related to knowledge and systems explained in Clarifying and explaining the study materials by the academic staff through the whiteboard and -1 using PowerPoint using LCD and Data show screens Providing students with knowledge through homework assignments for the study vocabulary -2

Providing students with knowledge through homework assignments for the study vocabulary -2

Asking students to visit the library to obtain academic knowledge related to the study -3 vocabulary Improving students' skills by visiting websites to obtain additional knowledge of the study -4 materials Brainstorming during the lecture -5 **Evaluation** methods Daily tests with multiple-choice questions for the study materials Participation grades Difficult competitive questions for students -Setting grades for assigned homework -Qualitative and quantitative practical tests in laboratories -C- Emotional and value objectives C 1 - Enabling students to solve problems related to the intellectual framework of the foundations and applications of biotechnology C 2 - Enabling students to solve problems related to industrial, environmental and food microbiology C 3 - Enabling students to solve problems related to microbial pathology, immunology, cell science and genetic engineering C 4 - Enabling students to solve problems related to animal and plant tissue science Teaching and learning methods Providing students with the basics and additional topics related to previous educational outcomes for problem-solving skills Scientific Solving a set of practical examples by the academic staff -Student participation during the lecture to solve some scientific issues **Evaluation** methods Daily exams with multiple-choice questions that require scientific skills -Daily exams with scientific and practical questions -Participation grades for questions Competition for academic topics -Setting grades for homework -Assigning students to do scientific seminars and discuss them -D - General and transferable qualification skills (other skills related to employability and personal .(development D1 - Enabling students to think and analyze topics related to the intellectual framework and standards of the foundations and applications of stereochemistry D2 - Enabling students to think and analyze topics related to the laws of stereochemistry

D3 - Enabling students to think and analyze topics related to language systems for importing chemicals D4 - Enabling students to think and analyze topics related to stereochemistry in English Teaching and learning methods Providing students with the basics and additional topics related to stereochemistry thinking and analysis outcomes Forming discussion groups during lectures to discuss stereochemistry topics that require thinking and analysis Asking students to ask a set of thinking questions during lectures such as what, how, when and why for specific topics Giving students homework that requires self-explanations in causal ways -**Evaluation methods** Daily exams with self-solved homework questions -Participation grades for competitive questions related to the subject matter -Specific grades for homework -

		Stereochemistry / Th	eoretical Cours	e Structu	re
Evaluation method	Teaching method	Unit name/topic	Required learning outcomes	hours	week
امتحانات يومية واسبوعية وفصلية ونهائية	Paper -1 lectures Standard -2 models Video -3 lectures	Chail molecules Isomerism Enantiomers and chiral molecules	Study of molecules and isomers	3	1
امتحانات يومية واسبوعية وفصلية ونهائية	Paper -1 lectures Standard -2 models Video -3 lectures	The biological importance of chirality The historical origin of strochemistry Test of chaility Nomenclature of Enantiomers	Importance of chirality and methods of naming	3	2
امتحانات يومية واسبوعية وفصلية ونهائية	Paper -1 lectures Standard -2 models Video -3 lectures	Properties of Enantiomers: The origin of optical activity	Properties of ensomers Optical properties and importance	3	3
امتحانات يومية واسبوعية وفصلية ونهائية	Paper -1 lectures Standard -2 models Video -3 lectures	Synthesis of chiral molecules chiral drugs	Synthesis of chiral molecules	3	4
امتحانات يومية واسبوعية وفصلية ونهائية	Paper -1 lectures Standard -2 models Video -3 lectures	Molecules with more than one stereocenter	Stereochemistry of drug efficacy	3	5
امتحانات يومية واسبوعية وفصلية ونهائية	Paper -1 lectures Standard -2 models Video -3 lectures	Extended and Fischer projection formulas	Complex molecules containing more than one chiral center	3	6

-			TT .		
امتحانات يومية واسبوعية وفصلية ونهائية	Paper -1 lectures Standard -2 models Video -3 lectures	Steroisomerism of cyclic compounds	How to convert from one model to another when writing and drawing the compound	3	7
امتحاتات يومية واسبوعية وفصلية ونهائية	Paper -1 lectures Standard -2 models Video -3 lectures	Relating conformations through reactions in which no bonds to the sterocenter are broken	Stereochemistry of cyclic compounds	3	8
امتحانات يومية واسبوعية وفصلية ونهائية	Paper -1 lectures Standard -2 models Video -3 lectures	Sepration of enantiomers: Resolution	Effect of positions during reactions that do not include breaking the bonds of the chiral center	3	9
امتحانات يومية واسبوعية وفصلية ونهائية	Paper -1 lectures Standard -2 models Video -3 lectures	Compounds with sterocenters other than carbon	Ensomers and their separation	3	10
امتحانات يومية واسبوعية وفصلية ونهائية	Paper -1 lectures Standard -2 models Video -3 lectures	Chail molecules that do not possess a Tetrahedral atom with four different groups	Compounds containing active centers other than carbon atoms	3	11
امتحانات يومية واسبوعية وفصلية ونهانية	Paper -1 lectures Standard -2 models Video -3 lectures	The biological of importance of chirality	Chiral molecules that do not contain four different groups	3	12
امتحانات يومية واسبوعية وفصلية ونهانية	Paper -1 lectures Standard -2 models Video -3 lectures	Stereochemistry of organic reactions With examples(addition subsititution elimination reactions)	Biological importance of chiral compounds	3	13
امتحانات يومية واسبوعية	Paper -1 lectures Standard -2 models	Streoselective and stereospecific reactions	Stereochemistry in organic reactions with examples of	3	14

وفصلية ونهائية	Video -3 lectures		various reactions		
امتحانات يومية واسبوعية وفصلية ونهائية	Paper -11 lectures Standard -2 models Video -3 lectures	NMR sepectroscopy with practices problems	Some selective and selective reactions	3	15

	13. Infrastructure
1-Organic chemistry By Graham Solomons and Graig Fryhle	1- Required textbooks
1-Advance Organic chemistry By Francis A Cary 2-Organic chemistry by Clayden ,Greeves ,Warren 3-Stereochemistry Workbook by Allan D. Dunn 123	1- Main references (sources)
Organic chemistry By Graham Solomons and Graig Fryhle	A- Recommended books and references
Many sites that deal with stereochemistry, including .medical sites, YouTube, and scientific research	(scientific journals, reports,)

1. Curriculum develo	pment plan
----------------------	------------

Follow up on internet references and research published in international journals as well as modern books, if available, to keep pace with the great development in stereochemistry.

Master's / Second Course

Specialization: Organic Chemistry

Spectrometric Identification of Organic Chemistry

Course Description

Study of structures and mechanisms in organic chemistry, knowledge of preparation methods, comparison .between them, possible resulting compounds, and methods used to diagnose organic compounds

University of Baghdad	1. Educational institution
College of Science / Department of Chemistry	2. Academic department/center
Spectrometric Identification of Organic Chemistry	3. Course name/code
Weekly	4. Available forms of attendance
First Semester 2023-2024	5. Semester/year
45 Hours	6. Number of study hours (total)
	7. Date this description was prepared
2023\9\1 1. Course objectives:	

Teaching graduate students organic chemical reactions and chemical structures, knowing the structure of organic compounds, and how to explain the mechanism of organic reactions and their practical applications aimed at the scientific development of organic chemistry.

9-Course Outcomes, Teaching, Learning and Evaluation Methods

A- Cognitive Objectives

A1- Identify the preparation of organic compounds

A2- Preparation Mechanics

A3- The importance of compounds and their applications

B- Program Skills Objectives

.B1- Teaching the student to benefit from the Internet and external sources to extract research and reports on the subject

.B2- Solving external problems related to the topic

.B3- Discussing students within the lecture and asking questions to expand the student's understanding

Teaching and learning methods

Approved books

Paper lectures
Basic scientific books
Modern scientific research
Evaluation methods
Short exams (oral and written) and continuous monthly exams
Reports and research required from the student
C- Emotional and value goals
C1- Communication with students
C2- Reaching scientific thinking and deductive analysis of scientific information
.(D- General and transferable qualification skills (other skills related to employability and personal development
D1- Conducting scientific debates with other universities
D2- Ability to work in government chemical analysis laboratories
D3- Ability to gain experience in collecting and analyzing scientific material and giving seminars

Evaluatio n method	Teaching method	Unit name/topic	Required learning outcomes	hours	week
Exams	Theoretical	Chapter I: Ultraviolet Spectrometry		3	First
Exams	Theoretical	-Theory and Sample handling		3	Second
Exams	Theoretical	-characteristic Absorption of Organic Compounds		3	Third
Exams	Theoretical	Chapter II: Infrared Spectrometry		3	Fourth
Exams	Theoretical	-Theory and Sample handling		3	Fifth
Exams	Theoretical	-Theory and Instrumentation		3	Sixth
Exams	Theoretical	- Sample handling		3	Seventh
Exams	Theoretical	-Interpretation of Spectra		3	Eighth
Exams	Theoretical	-characteristic group frequencies of Organic molecules		3	Ninth
Exams	Theoretical	Chapter III: proton magnetic Resonance Spectrometry		3	Tenth
Exams	Theoretical	- Introduction and Theory		3	Eleventh
Exams	Theoretical	-Apparatus and Sample handling		3	Twelfth
Exams	Theoretical	-Chemical Shift and Simple Spin- Spin Coupling		3	Thirteenth
Exams	Theoretical	Chapter IV: 13C-NMR Spectrometry		3	Fourteenth
Exams	Theoretical	Chapter V: Mass Spectrometry		3	Fifteenth

	11-Infrastructure
1-R.T.Morrisson and Boyd,"Organic chemistry '',6 th	6 Required textbooks
ed.paramountcommunication company 1992	
2- A.I.Vogel,'Text book of practical organic chemistry',3rd	
ed.,London1974	
3-J.Balfour,'Indigo ',British Museum Press1998	

Shriner,R.L.MorrillmT.C.Curtin D.Y.and Fuson C.,(The systematic identification of organic compounds),John Wile Sonic INC.United state ;8 th edition 2004	7 Main references (sources)
Silverstein Mr.M.Francis Mx.w.and David J.K.Spectroscopic identification of organic compounds.John Wily &Sonic INC.United	a) Recommended books and references (scientific journals, reports, etc.)
	b) Electronic references, Internet sites

1. Curriculum development plan
Updating the scientific material Using modern technologies

/ Master's / Second Course Specialization in Analytical Chemistry Advanced Flow Injection Analysis

Academic program description

This academic programme description provides a concise summary of the main features of the programme and the learning outcomes expected of the student, demonstrating whether he or she has made the most of the learning opportunities available and is accompanied by a description of each .course within the programme

University of Baghdad\College of Science	1. Educational Institution
Chemistry	Academic Department/Center
Department of Chemistry	Name of Academic or Professional Program
Master of Chemistry	Name of Final Certificate
Semester / Advanced Flow Injection Analysis / Second Course	Academic System/Annual/Courses
2024-2023	Accredited Accreditation Program
Ministry of Higher Education and Scientific Research	Other External Influences
2023\9\1	Date of Preparation of this Description

Objectives of the Academic Program

The aim of teaching the Advanced Fluid Injection Analysis course / First Semester is to identify the basis of the work of continuous flow injection analysis and the advantages and wide modern applications of this modern technique in pharmaceutical chemistry, pharmaceutical analysis, and various estimates of drugs, transition elements, organic and inorganic groups, and amino acids with high accuracy, repeatability, and control, and low consumption of chemicals and organic reagents using advanced techniques in the field of flow injection, including microfluidic technology, LOV, and intermittent automation systems in the fields of medicine, automatic organic elemental analysis, and MULTI LAYERS FILM technology, in addition to other systems included under the STOP-FLow and 3FIA fluid injection analysis, and area integration and sequential analysis as recorded in the vocabulary

Course Outcomes, Teaching, Learning and Evaluation Methods -10

A- Cognitive Objectives

A1- Identify the advantages and characteristics of continuous flow injection analysis using different types of techniques that differ in the basis of work depending on either continuous or intermittent flow or flow - stop or .sequential or microfluidic systems

A2- Sensitivity and control of the flow injection analysis method and reaching results with high conformity and repeatability of the obtained results

A3- Wide applications of the FIA technique in several fields including pharmaceutical estimates and industrial, environmental and biological models because the method is characterized by speed in estimation, simplicity and high .modeling per hour compared to classical methods

A4- Use modern statistics to process the results and how to use it and teach it to students and apply it to the obtained research results and prove the extent of the credibility and sensitivity of the proposed FIA method compared to the .standard method using several statistical tests

B - Course specific skill objectives

B1 - Helping students use important electronic programs that facilitate their understanding of the material and encouraging them to read, follow up and derive ideas in proposing new automatic systems used in several fields of .applications and analysis

B2 - Discovering new methods and new interactions for other estimates in conjunction with other analysis techniques such as using FIA technology as an analytical technique and sensing with selective electrodes or measuring turbidity or fluorescence, and thus it is possible to couple the FIA method with separation methods such as GC, HPLC solid .phase extraction

B3 - The possibility of manufacturing different injection valves (the method of injecting the sample into the measurement system) from plastic materials or Teflon or polypropylene at very low prices compared to expensive

global valves. The innovative valve includes seven to eight chemicals in sizes up to microliters (lowest chemical (consumption

B4- The possibility of manufacturing microfluidic systems from Teflon tubes with internal diameters (0.5mm), rationing the consumption of expensive organic reagents

Teaching and learning methods

Realistic lectures in classrooms -1

.Create a channel on the Telegram program with master's students -2

Create an electronic class with students to copy the approved academic program lectures, questions and their -3

solutions, some homework, inquiries and clarifications related to the subject

Use additional electronic programs to meet students directly Google Meet, FCC, Zoom, etc. to facilitate the task of -4

teaching students and their understanding of the subject

Evaluation Methods

As for the evaluation of the professors of the students through the monthly exams, the date of which is set in advance, the short exams in the classrooms, and the homework assignments that include video recordings explaining the mechanism of some devices and parts of some important chemical reactions electronically and are prepared by the .students and are related to the topics of the assigned subject

C- Emotional and value objectives

C1- Renewing the students' self-confidence from the scientific point of view and through classroom and .extracurricular discussions

C2- The relationship between the professor and the student is always positive and correct and is built on mutual .respect

C3- The professor's affection and respect for the student gives the student an effective incentive to work hard and raise .his academic level

.C4- The student's awareness and understanding of the harms of smoking and drugs on health and society

.(D- General and transferable qualification skills (other skills related to employability and personal development

D1- Through the professor's positive relationship with the master's student throughout the course, the student is qualified to be a responsible and leading person in the future and to have a strong personality to manage and teach the .scientific material, whether in classrooms or participating in conferences

D2- The student's ability to participate effectively in seminars and workshops held in the scientific departments first .and in their affiliated departments second

D3- Active participation in the classroom and relying on students to solve some mathematical problems and discuss the solutions contributes to supporting the educational process as important elements capable of successful actual .management in other ministries

D4- For personal development, scientific sources and references and terms related to and specific to the course are .used

				Tl	ne decision
Evaluation method	Teaching method	Unit name/topic	The decision	Hours	week
Weekly exams and monthly exams	Paper -1 lectures 2- Electronic screen	Introduction to flow injection (analysis (FIA	 Advantages and dis Advantages of automated analysis Types of automatic systems, Modern continuous flow analyzer 	3	1
Weekly exams and monthly exams	Paper -1 lectures 2- Electronic screen	FIA advantages of FIA	1 – Instrumentation 2 - Sample and reagent transport system, injection valve and detectors , peristaltic	6	3-2
Weekly exams and monthly exams	Paper -1 lectures 2- Electronic screen	Separation in FIA	.1 – Dialysis 2- Gas diffusion and - Solvent extraction	6	5-4
Weekly exams and monthly exams	Paper -1 lectures 2- Electronic screen	Dispersion (low medium , and dispersion Principles of FIA	 Types of FIA Stopped flow methods . Reversal FIA - 4 - Merging zones FIA . 5 - Sequential injection analysis 	6	7-6
Weekly exams and monthly exams	Paper -1 lectures 2- Electronic screen	Lab -on- a valve technology (LOV)	Micro Fluidic Systems (analyzer allows the analysis of DNA, RNA).	3	8
Weekly exams and monthly exams	Paper -1 lectures 2- Electronic screen	Discrete Automatic systems	1-Automated sampling And sample definition of liquid and gases. 2-Robotics 3-Discrete clinical analyzers.	9	9 10 11

			4-Automatic organic elemental analyzers.		
Weekly exams and monthly exams	Paper -1 lectures 2- Electronic screen	Analysis based upon multilayer films technology.	1-General principles ,film structures. 2- Instumentation. 3- Reflective photometer. 4- Potentiometry.	6	13-12
Weekly exams and monthly exams	Paper -1 lectures 2- Electronic screen	Statistical treatment of analytical parameters.	Application of continuous flow injection analysis for determination of drugs, inorganic and organic species, vitamins.	6	15-14

12-Planning for personal development

- Acquiring self-education skills for students that enable them to update their scientific information in the field of precise scientific specialization.

- Using electronic simulations of some videos published on social networking sites such as YouTube and others and benefiting from the experiences of the outside world that relied on electronic education and blended education (blended and electronic learning).

13- Admission criteria (setting regulations related to joining the college or institute)

Based on the competitive exam for doctoral students approved by the Ministry, they were accepted to study for a -

.doctorate and on different channels

.Based on the expansions approved by the Ministry -

The most important sources of information about the program -14

1- Ruzicka ,J and Hansen ,E.H,Flow injection analysis wiley and son Inc. , New York ,

1981.

2-Hansen , E.H and Ruzicka , I.Retro – review of flow injection analysis .trend and .chem. , 2008.

3-principles of instrumental of analysis by skoog ,Holler and Niman 5th edition.

4 - principles of instrumental of analysis by skoog ,Holler and Grouch 6^{th} edition .

5- fundamental of analytical chemistry by skoog , west , Holler $\mathbf{6}^{\text{th}}$ edition .

Master's / Second Course Specialization: Analytical Chemistry Principles and Statistics of Ion Selective Electrodes

Course Description

This course description provides a concise summary of the main features of the course and the learning outcomes expected of the student, demonstrating whether the student has made the most of .the learning opportunities available. It must be linked to the programme description

University of Baghdad	Educational Institution				
Chemistry	1. Academic Department / Center				
Principles and Statistics of Ion Selective Electrodes	Course Name / Code				
In-person	Available Attendance Forms				
Second Semester/2023-2024	Semester / Year				
3 Hours	Number of Study Hours (Total)				
2023\9\1	Date of Preparation of this Description				
	Course Objectives				
1- Students are introduced to the basics of selective electrode chemistr	y and their importance in chemical analysis is studied				
	the media in which selective electrodes work				
	materials using selective electrode technology				
	introduced to the types of selective electrodes				
	taught the applications of selective electrodes				
6- How	to analyze a mixture of materials in the model				
 A- Cognitive Objectives A1- Quantitative and qualitative determination of the material to be analyzed A2- Learning the calculations necessary to know the quantity of the material to be analyzed A3- Teaching students to know the correct method for determining the material to be analyzed B- Course Skills Objectives B1- Scientific and theoretical education in understanding the foundations of the principles and statistics of ion selective electrodes B2- Scientific convergence between theoretical curricula and practical reality B3- Finding appropriate statistical and analytical methods in how to determine and analyze chemical materials -B4 					
C- Emotional and value objectivesC1- The student feels that he is a scientific part of the scientific institutionC2- Building an advanced generation of the scientific pillar, the goal of which is to maintain the main role of the scientific curriculumC3- Bringing the student to an advanced stage of scientific awareness, which can be invested in the future					
.(D- General and transferable qualification skills (other skills related to employability and personal development					

D1- Urging them to borrow scientific books from the college and department library to benefit from them scientifically

D2- Developing students' personal skills by developing them in the correct way

D3- Clarifying students' future goals, which generates a factor of scientific motivation

D4- Making the scientific institution the largest incubator for students, which generates a factor of belonging

Teaching and learning methods

Using known learning methods by explaining the theoretical material -

Using the electronic screen and electronic programs as a means to display important information during the -2 explanation

Creating an electronic class and a channel on the Telegram website -3

Adopting specialized books to give the student scientific foundations -4

Evaluation methods

Monthly written tests -1

Asking inferential questions during the lecture and preparing homework -2

Conducting a quick daily exam during the lecture time -3

Students must be involved in the scientific discussion during the lecture -4

Scientific and literary commitment is a priority in the evaluation process

.(D- General and transferable qualification skills (other skills related to employability and personal development D1- Encouraging them to use scientific books to benefit from them scientifically. D2- Clarifying the future goals of the students, which generates the scientific motivation factor. D3- Making the scientific institution the largest .incubator for the students, which generates the sense of belonging

				Course	structure.10
Evaluation method	Teaching method	Unit name/topic	Required learning outcomes	hours	Week
الامتحانات والتقارير الاسبو عية	Paper -1 lectures Electronic -2 screen	Membrane Potential Theory	Theory of membrane potential	3	1
الامتحانات والتقارير الاسبوعية	Paper -1 lectures Electronic -2 screen	Public Relations	General relation	3	2
الامتحانات والتقارير الاسبوعية	Paper -1 lectures Electronic -2 screen	Fluid Contact Potential	Liquid – junction potential	3	3
الامتحانات والتقارير الاسبوعية	Paper -1 lectures Electronic -2 screen	Classification	Classification	3	4
الامتحانات والتقارير الاسبوعية	Paper -1 lectures Electronic -2 screen	Glass electrode potential	Origin of the glass electrode potential	3	5
الامتحانات والتقارير الاسبوعية	Paper -1 lectures Electronic -2 screen	Solid phases - ion selective electrodes	Solid state ion- selective electrodes	3	6
الامتحانات والتقارير الاسبو عية	Paper -1 lectures Electronic -2 screen	Measurement of concentrations of ionic complexes	Concentration measurement of uncomplexed ions	3	7
الامتحانات والتقارير الاسبوعية	Paper -1 lectures Electronic -2 screen	Measurement of total concentrations	Measurement of total concentration	3	8
الامتحانات والتقارير الاسبوعية	Paper -1 lectures Electronic -2 screen	Design of Ion Selective Electrodes Cells	Cell design of ion- selective electrodes	3	9
الامتحانات والتقارير الاسبوعية	Paper -1 lectures Electronic -2 screen	Characteristics of Ion Selective Electrodes	Characterization of ion-selective electrodes	3	10
الامتحانات والتقارير الاسبوعية	Paper -1 lectures Electronic -2 screen	Methods of Analysis	Method of analysis	3	11
الامتحانات والتقارير الاسبوعية	Paper -1 lectures Electronic -2 screen	Direct Potentiometric Method Standard Addition Method	Direct potentiometric method	3	12

· · · · · · · · · · · · · · · · · · ·	I					,
			Sta	ndard addition		
			I	Paper -1method		
				lectures		
				ectronic screen -2		
الامتحانات	Paper -1	Multiple standard	Mu	Itiple standard		
والتقارير	lectures	addition		addition	3	13
الاسبوعية	Electronic -2	Potentiometric		Potentiometric	5	10
÷	screen	titration		titration		
		Gaussian		Gaussian		
الامتحانات	Paper -1	Distribution		Distribution		
والتقارير	lectures Electronic -2	General		General	3	14
والتقارير الاسبوعية	screen	application of ion	app	olication of ion		
	sereen	selective electrodes	selec	tive electrodes		
الامتحانات	Paper -1					
والتقارير	lectures	statistical		statistical	3	15
الاسبوعية	Electronic -2	Statistical		statistical	5	10
	screen				1	. Infrastructure
					1	. Infrastructure
1-Selective in	n sensitive elec	trodes / G.J. Moody ar	nd		1- Reau	ired textbooks
J.D.R. Thoma		1000037 0.5. 1010000y al	iu -		4-	
Moody, G. J.						
	David Ronald.					
		Publishing, 1971.				
Watioid, Liigi		2-Ion selective elect	trodes			
		JIRI KORYTA	noues			
JIKI KOKTTA					2- Main refere	ences (sources)
			a) Recon	nmended books	、 <i>、 、 、</i>	
				cientific journal		
				ronic references		
				,		

1. Curriculum development plan

Keeping pace with the development in the preparation and methods of assigning materials in general using the selective poles method

Master / Second Course Specialization: Analytical Chemistry Advanced Methods of Elemental Analysis

Course Description

Study the mechanisms and devices for qualitative and quantitative analysis and how to deal with them and identify the types of techniques for separating and detecting various organic and .inorganic compounds

University of Baghdad / College of Science	1. Educational Institution
Chemistry Department	2. University Department/Center
Advanced Methods of Elemental Analysis	3. Course Name/Code
Weekly	4. Available Attendance Forms
Second Semester / 2023-2024	5. Semester/Year
3 Hours	6. Number of Study Hours (Weekly)
2023\9\1	7. Date this Description was Prepared

Course Objectives .

The objective of teaching the Advanced Instrumental Analysis course / second semester is to identify the mechanisms and devices for qualitative and quantitative analysis and how to deal with them and to identify the types of techniques for separating and detecting various organic and inorganic compounds. The course also includes a full detailed presentation of these techniques in terms of the mechanism of work, parts of the devices and types of materials .specialized in detecting them

Learning outcomes and teaching, learning and evaluation methods .2

A- Cognitive objectives

.A1- Identify the various instrumental devices used in quantitative and descriptive analysis

.A2- Identify advanced instrumental analysis

.A3- Identify new separation and extraction methods

A4- Identify methods for estimating elements by absorption and atomic emission

B- Course skill objectives

B1- Teaching the student how to use instrumental devices to examine and detect concentrations .and types of materials and compounds

B2- Continuous discussion within the lecture and asking some external questions to expand the student's understanding of the material and the student's continuous participation in solving .some mathematical and statistical problems

B3- Teaching the student to benefit from the Internet to extract research and summary reports on the prescribed practical material

Teaching and learning methods **-10**

Clarifying the scientific material through approved analytical books and creating paper and .electronic lectures to clarify the mechanisms used under study

.Suggested discussion within the lecture

.(Continuous use of the World Wide Web (Internet

.Creating an electronic class and a channel on the Telegram website

Evaluation methods -11

Conducting short surprise exams every week so that the student is aware and continuously .reading the topics of the curriculum

Conducting monthly exams and evaluating external reports and research required from the .student

.Conducting electronic news

C- Emotional and value goals

C1-The ability to infer and suggest external questions and issues that expand the student's .thinking

D- General and transferable qualification skills (other skills related to employability and .(personal development

D1-Conducting some scientific debates with other universities or well-known scientific centers .and honoring the outstanding among them

D2- Developing personal skills through scientific trips to sites specialized in chemical .transactions

			Course	e structui	re .1
Evaluati on method	Teaching method	Name of unit/course or topic	Required learning outcomes	hours	Week
Weekly exams and reports	Paper -1 lectures 2- Electronic screen	 (A) Spectral Methods 1. Atomic absorption spectrometry 2. Atomic fluorescence spectrometry Atomic emission spectroscopy 3. UV-Visible spectrophotometry 4. Infrared Spectroscopy 5. Nuclear Magnetic Resonance Spectroscopy 6. Electron Spin Resonance Spectroscopy 7. Turbidimetry, Chemiluminescence and electrochem-iluminescence. (B) Electrochemical Methods: 1. Potentiometry 2. Amperometry 3. Conductometry 4. Voltammetry (C) Separation Methods 1. Chromatography 2. Electrophoresis Mass spectrometry 1-Atomic Emission Spectrometry 2-Atomic Absorption Spectrometry 3-Atomic Fluorescence Spectrometry 	Introduction and Classification of Instrumental Analysis	3	1
Weekly exams and reports	Paper -1 lectures 2- Electronic screen	 Instrumentation LIGHT SOURCES The Hollow Cathode Lamp (HCL): Electrodeless Discharge Lamp (EDL): The advantages of EDL compared with HCL are: EDL versus HCL 	Atomic Spectrometry	3	2
Weekly exams and reports	Paper -1 lectures 2-	- Atomizer (Sample Cell) Burner Heads	Atomic Spectrometry	3	3

5-4

		- LIGHT SOURCES			
Weekly exams and reports	Paper -1 lectures 2- Electronic screen	ETA-AAS Instrumentations Graphite furnace system components The Graphite Furnace Atomizer The Graphite Furnace Power Supply and Programmer Temperatures Programming In ETA 1- Drying Step 2-Ashing (pyrolysis) Step 3-Atomization Step Interferences in Electrothermal AAS A-Spectral interferences 1- Emission Interference: To eliminate this interference problem – 2- Molecular Absorption (Background absorption) Methods for Background Absorption Correction 1- Nearby line (Two line method): 2-Continuum Source Method 3- Zeeman Background Correction Method Types of indirect reactions to relay on by AAS 1- Precipitation reactions: 2- Reaction of the analyte with a metal chelate 3- Formation of heteropoly acids 4- Solubilization or volatilization of metal ions from pure metals. 5- Reduction to the element, 6- The selective extraction or precipitation of one oxidation 7- Displacement of some metal ions from their complexes. <i>applications</i>	Electrothermal Atomic Absorption Spectrometry	3	7-6

Weekly exams and		The First Exam	The First Exam	3	8
reports Weekly exams and reports	Paper -1 lectures 2- Electronic screen	Determination of drugs and pharmaceutical preparations: The pharmaceutical compounds or preparation can be classified into: 1 Antibacterial and Antifungal Drugs such as 2 Sedative and Hypotic Drugs: such as the compounds of Barbiturates and Benzodiazepines 3 Hormones: such as Ethinyloestradiol and Insulin 4 Vitamins: B1, B12, vitamin C, Folic acid 5 Other Drugs such as: - Methylampphetamine and Ephedrine - Strychnine and Brucine - Noscapine and Chlorprothixene - Chloropheniramine meleate (MCP) - Metoclopramide -Theobromine Chloramphenicol Penicillin Benzodiazepines Hormones (Insulin) Vitamins (Vitamin C) Metals in pharmaceutical Preparations Oxygen compounds 1- Indirect Electrothermal Atomization Atomic Absorption Spectrometric Determination of the Drug Desferrioxamine in Some Pharmaceutical Preparations Using Vanadium (V) as a Mediating Element	Indirect Analysis by Atomic absorption Spectrometry	3	10-9

 1					
		Determination of			
		Desferrioxamine in the Drug			
		Desferal TM as DFOM-Au (III)			
		Complex by Using Indirect			
		Electrothermal Atomic			
		Absorption Spectrometry and			
		Other Techniques.			
		An Indirect Atomic Absorption			
		Spectrophotometric			
		Determination of Trifluoperazine			
		Hydrochloride in Pharmaceuticals			
Weekly Pa	per -1	What are the Analytical	Inductively	3	11
•	tures 2-	Techniques based on Atomic	•	5	11
	ectronic	A	Coupled Plasma-		
-	creen	Spectrometry?	Atomic Emission		
		What are the Atomization	Spectrometry		
		/Excitation Sources?	(ICP-AES)		
		Why ICP-OES?			
		Major limitations of AAS			
		Electrical discharges:			
		ICP-OES INSTRUMENTATION			
		Steps of ICP-AES analysis			
		ICP-OES Instrument composed			
		of:			
		PRODUCTION OF EMISSION			
		Torches			
		Cross section of an ICP torch and			
		load coil depicting an ignition			
		1 0 0			
		sequence.			
		Region of Plasma:			
		The second se			
		Temperature:			
		Why we choose the Argon as a			
		Plasma gas?			
		Applications of ICP-OES			
		Agricultural and Foods:			
		Biological and Clinical			
		Organics			
		Environmental and Waters			
		Geological			
Weekly Pa	per -1	What is ICP-MS?	Inductively	3	12
	tures 2-	How does an ICP-MS work?	Coupled Plasma –	-	
reports Ele	ectronic	What is ICP-MS used for?	Mass		
S	creen	How do I do ICP-MS analysis?	Spectrometry		
			(ICP-MS)		
Weekly Pa	per -1	Principle	· · · · · /	3	13
	tures 2-	Principle Instrumentations	Flow injection	3	13
reports		msuumentations	analysis		

	Electronic screen	Application in determination of elements			
Weekly exams and reports	Paper -1 lectures 2- Electronic screen	Principle Instrumentations Application in determination of elements	Polarography	3	14
		The Second Exam	The Second Exam	3	15

	Infrastructure -11
Fundamentals of analytical	Required textbooks
chemistry /Skoog and West ,7th	
ed.,2000	
Fundamental of analytical	
chemistry by Skoog, West,	
Holler & Crouch, 8 th ,	
2004	
Introduction to Instrumental	Main references (sources)
Analysis	
by Robert D. Braun	
	Recommended books and references (scientific journals, reports, etc.)
	Electronic references, websites, etc.

12- Curriculum development plan

Includes adding the latest automated methods for estimating elements and organic compounds.

Master's / Second Course

Specialization: Analytical Chemistry (Amplification Reactions) Amplification Reaction

Course Description

This course description provides a concise summary of the main features of the course and the learning outcomes expected of the student, demonstrating whether the student has made the most of .the learning opportunities available. It must be linked to the programme description

Ministry of Higher Education and Scientific Research - University of	1. Educational institution
Baghdad	
University of Baghdad Scientific	2. Academic department/center
Analytical Chemistry / Amplification reaction(Amplification reactions)	3. Course name/code
Weekly (student class for master's students, specialization and non-	4. Available forms of attendance
specialization)	
Second course - 2023-2024	5. Semester/year
45 and weekly 3 hours for master's students	6. Number of study hours (total)
2023\9\1	7. Date this description was prepared

Course objectives -5

Raising the level of education and the level of graduate students to the scientific and research level required to manage scientific, industrial and academic institutions and to link with all institutions and ministries by providing an important technique in the field of analytical chemistry to analyze elements and organic and inorganic compounds in general through selected chemical reactions that are more selective and sensitive in the direction of low detection limits and wide ranges of the calibration curve without suffering from the effects of foreign substances and in a very small size .to be used in all industrial, environmental, health and scientific research fields

Course outcomes and teaching, learning and evaluation methods .6 :A- Knowledge and understanding or customary objectives A1- Obtaining a master's degree in chemistry

Identifying the various chemical reactions of substances present in small concentrations and identifying the necessary techniques for their analysis to diagnose many organic and inorganic compounds, drugs and ions

A2- Applying these reactions using various techniques through working in the field of health and .pathological and industrial analyses

A3- Application of this technology in the field of the Ministry of Industry and Oil in analyzing and .processing petroleum derivatives

A4- Graduating a scientific researcher armed with all analytical techniques in addition to this technique and mechanism and relying on oneself in facing and solving all malfunctions, whether .in the devices or practical problems of any analytical method

A5- Working in the field of the Ministry of Agriculture and analyzing all pollutants, whether in .soil or plants, and knowing their concentrations and selective reagents to diagnose them

A6- Working in the field of the Ministry of Environment and analyzing all pollutants (air, water, .(soil

B - Course specific skill objectives

B1 -- Develop skills through practical preparation and experiments

B2 - Hold seminars, conferences and study groups

B3 - Hold discussion groups

B4 - Training courses and workshops and acquire initial knowledge in analytical systems and the terminology used and qualify the student to learn about all analytical sciences and develop learning skills in using all analytical devices and all samples available in the local market Teaching and learning methods

Use technological educational means to facilitate the comprehension of the material, including .1 explanation and discussion

Emphasize the practical aspect and student participation in each electronic lecture .2

Urge students to use the discs prescribed for the material or listen to the lecture electronically .3 with various means of clarification from various websites on the Internet and presentations and scientific films

Evaluation methods

Written tests - oral tests - observation - daily training - completing assignments - completing assignments Practical, theoretical and discussion during lectures and final exams C- Emotional and value objectives

C1-- The ability to monitor and collect environmental data for the purpose of analysis using available technology

Making the student look at the results from a broad scientific point of view for the purpose of -2 in-depth interpretation

Teaching and learning methods

Using technological educational means to facilitate the comprehension of the material, .1 including explanation and discussion

Emphasizing the practical aspect and student participation in each lecture .2

Explanation and discussion. And making student participation the main focus of learning for .3 .the purpose of enhancing their understanding of the material

Asking students to prepare various activities, reports and topics related to the scientific material .4 .studied

Evaluation methods

Written tests - Daily oral tests - Daily participation - Preparing, writing and discussing assignments

D- General and transferable qualification skills (other skills related to employability and personal .(development

D1- Leadership and effective communication skills to manage scientific and industrial institutions, .laboratories or pathological analyzes with the least cost and time period

D2- Mastering the skill of dealing with different mechanisms for statistical analysis and data .processing

.D3- Developing skills and gaining experience through listening, speaking and personal practice .D4- Using theoretical and practical information and investing it in the actual practical aspect

Course structure .5 Teaching Unit Name / or Topic Required Evaluation hour method: In-(Second Course) learning week method S Master outcomes person Principle of direct Lectures using Short and Direct amplification the whiteboard and indirect semester reaction amplification 3 exams and 1 Indirect amplification reactions daily reaction assignments Lectures using - Amplification of anions Amplification of the whiteboard negative ions _ Iodide, Bromide, 3 2 Chloride Lectures using Amplification of Sulpher Amplification and the whiteboard estimation of sulfur ions : 3 3 compounds Sulfide ion . sulphate ion , Sulphite ion, Thiosulphate ion Amplification and Lectures using Amplification and the whiteboard analysis methods separation of pairs of 3 4 for a mixture of species compounds Lectures using - Thiocyanate ion Various compounds Short and the whiteboard Amplification of _ semester inorganic nitrogen 3 5 exams and compounds daily Amplification of cations assignments Lectures using Analysis and _ Arsenic ion, copper ion, the whiteboard amplification of mercury ion, silver ion, elements bismuth ion, Mn(II), Mg 3 (II), Tl (I), Pb (II). 6 Amplification of hydrogen peroxide Analysis and Lectures using Amplification of the whiteboard amplification of hydrazine organic compounds Amplification of 7 3 Aldehyde compounds Amplification of amino alcohol Lectures using Application for Amplification of poly the whiteboard various compounds nuclear aromatic compounds 3 Oxidation & coupling 8 reaction for determination of different organic

		compounds (Application).			
	Lectures using the whiteboard	 Azo salt formation & coupling reaction & Application 	Nitrogenation and coupling reactions	3	9
Short and semester exams and daily assignments	Lectures using the whiteboard	 Precipitation from homogeneous solution & Application 	Precipitation from homogeneous solutions	3	10
	Lectures using the whiteboard	Application in drug estimation and spectroscopic or electrical analysis	Spectroscopy and magnification	3	11
Short and semester exams and daily assignments	Lectures using the whiteboard	Analysis and magnification of aromatic and heterocyclic organic compounds	Analysis of aromatic compounds	3	12 و 13
		Monthly exam	Exam	3	14

1. Curriculum development plan:

Continue to develop the curriculum based on recent editions of books and references.

	1. Infrastructure
Spectrochemical analysis (Ingle & Crouch) 1988	1- Required textbooks
 Quantitative inorganic analysis (Belcher, Nutten & Macdonald)- 	
- Indicator- Bishop - 1972	
In addition to the international network of the Internet	
Douglas A.Skoog, Donald M. West & F.James Holler,	2- Main references (sources)
Stanley R.Crouch, Foundamentals of Analytical	
Chemistry, 2004, eight edition, THOMSON,	
Australlia.	
Software and websites after entering:Different reaction) (of amplification reaction)	A) Recommended books and references (scientific journals, reports,)
Foundamentals of Analytical chemistry (Amplification	B) Electronic references, websites
reaction)	

Google chrome	
Coogle enfonce	

(Research Methodology) Course Description / Scientific Research Methodology

	.required for scientific research
University of Baghdad / College of Science	1. Educational institution
Department of Chemistry	2. Department/university center
Scientific Research Methodology	3. Course name/code
Weekly	4. Available forms of assistance
Second Semester 2022-2023	5. Semester/year
1 hour = 15 x 30 hours	6. Number of hours of study (total)
2023/1/1	7. The date this description was prepared.

This course description provides an identification of the most important vocabulary .required for scientific research

Course objectives .8

It aims to teach the scientific research methodology subject, including reviewing scientific references and how to write a thesis and dissertation and publish scientific research in global .containers

Learning outcomes, teaching and learning methods and evaluation .9 A- Cognitive objectives

A1- Providing students with knowledge of the foundations of the scientific research methodology .subject

A2- Acquiring knowledge of the correct application of the rules of publishing in global .containers

B- Skill objectives

.B1- Teaching the student how to extract sources

B2- Continuous discussion within the lecture and asking some external questions to expand the student's understanding of the material and the student's continuous participation within the .lecture

Teaching and learning methods

Clarifying the scientific material through multiple examples and creating paper lectures and -1 .using power point technology to clarify solutions and applications

Continuously benefiting from the World Wide Web unit (Internet) by displaying videos related -2 .to the topic

Evaluation methods

Conducting short surprise exams for each student to be aware and continuous reading of -1 .lectures related to the scientific material

Conducting continuous monthly exams and evaluating the reports and research required from -2 .the student

C- Emotional and value objectives

C1- Giving students a number of external questions as homework and giving them the opportunity .to think and find solutions

C2- Motivating students to conduct reports and research on the subjects they study and use .modern technologies in research and develop their research skills such as the Internet Teaching and learning methods

It is noted that our dear students are aware and conscious that they are graduate students and are committed to reading, attending lectures, conducting monthly and short exams, and abiding by .university laws and regulations

Evaluation methods

Holding some courses and seminars in the department has a major role in educating our dear - .students and constructive discussion between the student and the professor

Academically distinguished students and participants in seminars held in the College of Science - .are evaluated and rewarded

D- General and transferable skills (other skills related to employability and personal .(development

D1- Conducting some scientific debates with other universities or well-known scientific centers and honoring the outstanding students among them. D2- Developing personal skills by giving .poetry debates through their participation in central celebrations held within the university

Week	hours	Required learning outcomes	Name of unit/course or topic	Teachin g method	Evaluation method
Firs	1 hour	The student will be able to know the basics of the scientific research methodology material	Research and researcher	Electronic screen	Weekly exams
Second	1 hour		Hidden knowledges.facts	Electronic screen	Weekly exams
Thirc	1 hour	The student will be able to know the basics of the scientific research methodology material and how to choose and prepare the research topic	Structure of a scientific paper	Electronic screen	Weekly exams
Fourth	1 hour	The student will be able to know the structure of the scientific article	Title (features of effective title, types of title)	Electronic screen	Weekly exams
Fifth	1 hour	The student will be able to know how to choose the appropriate title, abstract, introduction and conclusions when writing the research article	Publication process	Electronic screen	Weekly exams
Sixth	1 hour	The student will be able to know the steps for publishing the research article	Important terminologies: Research originality	Electronic screen	Weekly exams
Seventh	1 hour	The student will be able to know some terms related to the basics of writing such as original research and valuable research How to choose the required sources when writing the first chapter and reviewing references	Related work, literature review	Electronic screen	Weekly exams
Eightł	1 hour	U	Monthly exam		
Ninth	1 hour	The student will be able to know how to evaluate the research scientifically and whether it is suitable for publication or not and how to make a decision to accept or reject the research for publication	Reviewer's suggestion and editor decision	Electronic screen	Weekly exams
Tentł	1 hour	The student will be able to know the electronic research evaluation system and the mechanism for selecting scientific evaluators and how to choose the appropriate journal for publication	Reviewing systems	Electronic screen	Weekly exams
Eleventh	1 hour	The student will be able to identify some terms such as Scopus, Clarivate and Thomson Reuters	Web of science, Thomson Reuters, and Scopus	Electronic screen	Weekly exams
Twelfth	1 hour	Explain the meaning of the impact factor and Hirsch coefficient	Impact Factor and h- index	Electronic screen	Weekly exams
Thirteenth		Scientific plagiarism and electronic plagiarism	Plagiarism	Electronic screen	Weekly exams

	c screen	Monthly exam	.ENDnote	Fifteenth
Weekly exams		Organization Ref. using ENDnote software	The student will be able to index and write sources using	Fourteenth

	.12 Infrastructure
-Sources	Required readings:
Web of Science, www.ScienceDirect.Com, www.Scopus.com	Basic texts
	Course books
	Other
There are websites that show explanatory videos on how to organize	Special requirements (including, for example,
sources using	(workshops, periodicals, software, and websites

Master / Second Course Specialization: Biochemistry Chemistry of proteins and separations methods

Course Description

Study of the structure and complex composition of proteins and knowledge of the types and groups .of the basic large biological molecules (proteins) that exist

University of Baghdad	1- Educational institution
College of Science-Department of Chemistry	
Protein Chemistry and Separation Methods	3- Course name/code
Integrated Online and In-person	4- Available forms of attendance
Second Semester 2023-2024	5- Semester/year
45 Hours	6- Number of study hours (total)
2023-9-1	7- Date of preparation of this description

Course objectives

Enabling the student to know proteins and their complex structure in detail and in a manner that is equivalent to the advanced level of knowledge in the world

Enabling the student to know the types and groups of the basic large biomolecules (proteins) that exist

Course outcomes and teaching, learning and evaluation methods .8

A- Cognitive objectives

A1- Enabling the student to know proteins and their complex structure in detail and in a manner that is equivalent to the advanced level of knowledge in the world

A2 Enabling the student to know the types and groups of the basic large biomolecules (proteins) that exist in the body of the living organism

A3- Identify the most important methods of separation of proteins and all biomolecules B- Course specific skill objectives

B1- Identify the importance of biochemistry for the living organism

B2- Know how biochemistry is related to other sciences

B3- Distinguish some components of the living organism from the large biomolecules practically

Teaching and learning methods

Using the display screen -1

E-learning -2

Preparing reports and homework -3

Applying the material Theory in practice in the laboratory -4

Evaluation methods Questions + homework and final exam

C- Emotional and value-based objectives

C1- Creating scientific competencies characterized by professionalism, transparency, honesty .and integrity

C2- Enabling students to solve problems related to the analysis, diagnosis and discrimination of .chemical compounds

.C3- Enabling students to solve problems related to the intellectual framework of chemistry .C4- Acquiring the skill of dealing ethically with participants in scientific research

D- General and transferable qualification skills (other skills related to employability and .(personal development

D1- Conducting scientific debates with other universities

D2- Ability to work in government and private pathological analysis laboratories

D3- Ability to gain experience in collecting and analyzing scientific material and delivering seminars

.D4- Communicating effectively and the ability to lead work teams

			Co	urse Structu	re .8
Evaluation method	Teaching method	Unit name/topic	Required learning outcomes	hours	week
Homework + Final Exam	Online video lecture	Amino acids Structure of amino acids Stereochemistry of α-amino acids		6	1-2
Homework + Final Exam	Online video lecture	Properties of Amino acid side chain Modified Amino acids Peptides and the peptide bond		6	4-
Homework + Final Exam	Online video lecture	Structure and stability of the peptide bond		6	6-
Homework + Final Exam	Online video lecture	Primary structure of proteins		6	8-
Homework + Final Exam	Online video lecture	Higher level of protein organization Secondary structure: Regular way to fold the peptide chain Ramachandran		6	10-
Homework + Final Exam	Online video lecture	Fibrous proteins		6	12-1
Homework + Final Exam	Online video lecture	Globular proteins		6	14-1
		exam			1

 Principles of Biochemistry, Lehninger, 5th ed. 2008 2- Biochemistry By Voet 	Required Textbooks
Koolman J, K.H. Roehm Color Atlas of Biochemistry, 2 nd edition. Thieme Koolman J, K.H. Roehm. Color Atlas of Biochemistry	Main References (Sources)
, 2nd edition. Theme	

Recommended books and references (scientific journals, reports, etc.)
Electronic references, websites, etc.

8. Curriculum development plan
Updating the scientific material Using modern technologies

Master / Second Course Specialization: Biochemistry Biochemistry of Blood Biochemistry of Blood

Course Description

This course description provides a concise summary of the main features of the course and the learning outcomes expected of the student, demonstrating whether the student has made the .most of the learning opportunities available. It must be linked to the programme description

101	0 11
1. Educational institution	University of Baghdad / College of Science
2. University department/center	Chemistry Department
3. Course name/code	Blood Chemistry / Master
4. Programs in which it is included	Power Point
5. Available forms of attendance	Lists of names for Master's students
6. Semester/year	Second semester /
7. Number of study hours (total)	3 hours per week
8. Date this description was prepared	2023/1/20

Course objectives

Introducing the student to the components of blood: cells and plasma and how to -1 separate them from each other

.The normal proportions of each of its components -2

.Diseases that can be diagnosed through laboratory tests -3

Blood types -4

Learning outcomes and teaching, learning and evaluation methods .7 A- Knowledge and understanding

A1- The importance of knowing the components of blood

.A2- Methods of separating blood components and the differences between them A3- Knowing the relationship between the concentration of blood components and .disease

.A4- Diagnosing diseases and understanding the cause of infection

B- Subject-specific skills

B1- Teaching the student to benefit from the Internet and external sources to extract .research and reports on the subject

.B2- Solving external problems related to the subject

B3- Discussing students within the lecture and asking questions to expand the student's .understanding **Teaching and learning methods Approved books Paper lectures Evaluation methods** Short surprise exams **Ongoing monthly exams** Reports and research required from the student **C- Thinking skills C1-** Analysis **C2-** Linking information **C3-** Memorization C4- Ability to draw conclusions **Teaching and learning methods** Scientific conclusion and analysis **Evaluation methods** Short exams (oral and written) and semester exams D- General and transferable skills (other skills related to employability and personal .(development D1- Conducting scientific debates with other universities .D2- Skill of working in government and private health laboratories

			Co	ourse struc	ture .6
Evaluati on method	Teachi ng method	Name of unit/course or topic	Required learning outcomes	hours	Week
Exams and Seminars	Theoretic al	Overview of blood	The major functions of the blood, the constituents of the blood. The organic and inorganic constituents of the blood plasma. the compositions of blood plasma and blood serum.	3	1
Exams and Seminars	Theoretic al	Formed elements	production (hematopoiesis),growth factors, types, description, and general function	3	2
Exams and Seminars	Theoretic	Red blood cell	structure and functions, regulation of their production (growth factors), metabolism in RBC, reaction of importance in relation to oxidative stress in blood cells. The regulation of RBC breakdown and synthesis.	3	3
Exams and Seminars	Theoretic al	Anemia	Changes of the subunit composition of hemoglobin tetramers during development (embryonic, fetal and adult subunits). Abnormal hemoglobines. The classification of the causes of anemia. Structure and components of RBC Membrane and related genetic diseases.	3	4
Exams and Seminars	Theoretic al	ABO blood group	The biochemical bases of the system; types, structure, differences, Rhesus blood group, blood transfusion reaction.	3	5
Exams and Seminars	Theoretic al	White Blood Cell	classification, differences in structure and function between WBC types, differences between WBC and RBC (structure, function).	3	6
Exams and Seminars	Theoretic al	White Blood Cell	WBC production and precursors, half-life, the unique enzymes and proteins in neutrophils, formation of microphages and the chemical reactions. The inflammatory response sequence.	3	7

8	3	types, differences, functions, the	Lymphocytes	Theoretic	Exams and
		primary response and antibody		al	Seminars
		formation. Abnormal WBC count:			
		causes for each type and the			
		disease(leukocytosis and			
		leucopenia)			
9	3	the compositions of blood plasma,	Blood plasma	Theoretic	Exams and
		major functions, biosynthesis,	proteins	al	Seminars
		chemical structure, characteristics	I		
		of main blood plasma proteins:			
		albumins, globulins and fibrinogen,			
		polymorphism, half life, acute			
		phase proteins, negative acute			
		phase proteins.			
10	3	classification according to	Major Plasma	Theoretic	Exams and
	•	separation method, characteristic	Proteins-	al	Seminars
		and differences.	chemistry and		
			clinical		
			significance		
11	3	Details of the most important	Major Plasma	Theoretic	Exams and
		plasma proteins: Albumin,	Proteins-	al	Seminars
		ceruloplasmin, C reactive protein,	chemistry and		
		haptoglobin and HP- HB complex.	clinical		
		Plasma protein related to iron:	significance		
		transport, and storage.	0		
		Antiproteinases types and			
		function.			
12	3	Continue to previous lecture:	Major Plasma	Theoretic	Exams and
		related diseases according to	Proteins-	al	Seminars
		causes; genetic, or deficiency.	chemistry and		
		, , , ,	clinical		
			significance		
13	3	production, types, function,	Immonuglobins	Theoretic	Exams and
		structures.	U	al	Seminars
14	3	phases, intrinsic and extrinsic	Hemostasis and	Theoretic	Exams and
		pathways, formation of fibrin	thrombosis	al	Seminars
		(chemical reaction and fibrolysis).			
		Control of circulating thrombin			
15	3	Some important aspects in blood		Theoretic	Exams and
	-	genetic diseases		al	Seminars

 Scientific books and the latest published research on .the subject, in addition to lectures 1- Robert K. Murray, Daryl K. Granner, Peter A. Mayes, Victor W. Rodwell. Harper's Illustrated Biochemistry, 2008, a LANGE medical book, twenty-sixth edition. 2- Jeremy m. Berg, John . Tymoczko, Lubert Stryer. Biochemistry, fifth ed. 2009, W.H Free and Company. 3- Gerhard Krauss. Biochemistry of Signal Transduction and Regulation. Third edition, WILEY-VCH V GmbH & Co. KGaA, Weinheim 2003. 	Required readings: Basic texts Course books Other
	Special requirements (including, for example, workshops, periodicals, software, and websites)
	Social services (including, for example, guest lectures, vocational training, and field studies)

	1. Admission
	Prerequisites
5	Minimum number of students
40	Maximum number of students

Master / Second Course Specialization: Biochemistry Enzymes and their applications in clinical chemistry

Course Description: Enzymes and Their Applications in Clinical Chemistry

Study of enzyme applications in clinical chemistry and explaining the role of enzymes in biochemical reactions and how to regulate their work, enzyme kinetics and types of .inhibition

University of Baghdad	1. Educational institution
College of Science / Department of Chemistry	2. Academic department/center
Enzymes and their applications in clinical chemistry	3. Course name/code
In-person	4. Available forms of attendance
Second semester / 2023-2024	5. Semester/year
45 theoretical hours	6. Number of study hours (total)
2023\9\1	7. Date this description was prepared

Course objectives

Introduction to enzymes with a study of enzyme kinetics as well as types of inhibition -1

.Introduction to clinical chemistry and how to deal with medical laboratories -2

Identify enzyme applications in clinical chemistry and explain the role of enzymes in -3 biochemical reactions and how to regulate their work.

Explain how enzymes are used in clinical chemistry, especially in diagnosing diseases such as -4 .liver diseases

Course outcomes and teaching, learning and evaluation methods .1

.Cognitive objectives -

.Identify enzyme kinetics and types of inhibition -1

.Identify how to regulate enzymatic work -2

.Identify clinical chemistry and how to deal with medical laboratories -3

.Identify how to benefit from enzymes in diagnosing diseases -4

:B- Program skill objectives

Communicate with students based on the principle of e-learning through the e-class and -1. .Telegram

Continuous discussion during the e-lecture with asking questions to encourage student -2

.participation and expand their understanding of the scientific material

.Teaching students to benefit from scientific references and the Internet -3

Teaching and learning methods

:Providing students with the basics and topics related to knowledge and systems explained in Clarifying and explaining the study materials through the whiteboard and using PowerPoint -1

using LCD screens and Data show

Providing students with knowledge through homework assignments for the study vocabulary -2

Asking students to visit the library to obtain academic knowledge related to the study -3 vocabulary

Improving students' skills by visiting websites to obtain additional knowledge of the study -4 materials

Brainstorming during the lecture -5

Evaluation methods

Paper lectures and power point lectures .1

.Examples, questions and weekly discussions during the lecture .2

.Basic and modern scientific books. Conducting seminars for students .3

Daily tests with multiple-choice questions for academic subjects .4

Degrees of participation of difficult competitive questions for students .5

C- Emotional and value objectives

Communicating with students and setting important basics for students in order to deal with the .1 .scientific material of the course in a sound manner

Urging students to reach scientific thinking and analysis of scientific information .2

Teaching and learning methods

Providing students with the basics and additional topics related to previous educational outcomes for skills to solve scientific problems

Solving a set of practical examples by the academic staff -

Participation of students during the lecture to solve some scientific issues -

Evaluation methods

.Conducting exams through homework to encourage students to read lectures on a daily basis .1 Conducting short exams during the lecture to encourage students to read lectures on a daily .2 .basis

.Conducting continuous monthly exams .3

Reports and research required from the student .4

D- General and transferable qualification skills (other skills related to employability and personal .(development

Remind students of the importance of e-learning and guide them to adhere to university laws -1 .and regulations

Urge students to gain experience in collecting and analyzing scientific material and using -2 scientific references

Preparing students to work in government and private pathological analysis laboratories -

Preparing students to give seminars and teach scientific material -4

Teaching and learning methods

Providing students with the basics and additional topics related to the outputs of thinking and - chemical analysis

Forming discussion groups during lectures to discuss chemical topics that require thinking and - analysis

Asking students a set of thinking questions during lectures such as what, how, when and why - for specific topics

Giving students homework that requires self-explanations in causal ways -Evaluation methods

Daily exams with self-solved homework questions -Participation grades for competitive questions related to the study material -Specific grades for homework -

Course Struc	ture Enzymes and	Their Applic	ations in Clinical Chemistr Th	ry / .10 eoretical	
Evaluation method	Teaching method	Unit name/topic	Required learning outcomes	hours	week
Daily, weekly, semester and final exams	Paper lectures -1 Electronic screen -2	Enzymes and their applications in clinical chemistry	Introduction to Enzymes.	3	First
Daily, weekly, semester and final exams	Paper lectures -1 Electronic screen -2	Enzymes and their applications in clinical chemistry	Catalytic Mechanisms of Enzymes.	3	Second
Daily, weekly, semester and final exams	Paper lectures -1 Electronic screen -2	Enzymes and their applications in clinical chemistry	Rates of enzymatic	3	Third
Daily, weekly, semester and final exams	Paper lectures -1 Electronic screen -2	Enzymes and their applications in clinical chemistry	Methods for plotting enzyme kinetics Data.	3	Fourth
Daily, weekly, semester and final exams	Paper lectures -1 Electronic screen -2	Enzymes and their applications in clinical chemistry	Inhibition of enzyme activity.	3	Fifth
Daily, weekly, semester and final exams	Paper lectures -1 Electronic screen -2	Enzymes and their applications in clinical chemistry	Regulation of enzyme	3	Sixth
Daily, weekly, semester and final exams	Paper lectures -1 Electronic screen -2	Enzymes and their applications in clinical chemistry		3	Seventh
Daily, weekly, semester and final exams	Paper lectures -1 Electronic screen -2	Enzymes and their applications in clinical chemistry	activity in diseases (plasma- specific and non-plasma	3	Eighth
Daily, weekly, semester and final exams	Paper lectures -1 Electronic screen -2	Enzymes and their applications in	presence and removal of	3	Ninth

		clinical chemistry			
Daily, weekly, semester and final exams	Paper lectures -1 Electronic screen -2	Enzymes and their applications in clinical chemistry	Enzymes as markers in the	3	Tenth
Daily, weekly, semester and final exams	Paper lectures -1 Electronic screen -2	Enzymes and their applications in clinical chemistry	Enzymes as markers in the diagnosis of pancreas diseases.	3	Eleventh
Daily, weekly, semester and final exams	Paper lectures -1 Electronic screen -2	Enzymes and their applications in clinical chemistry	Isoenzymes and other cardiac markers in the diagnosis of myocardial infarction.	3	Twelfth
Daily, weekly, semester and final exams	Paper lectures -1 Electronic screen -2	Enzymes and their applications in clinical chemistry	reagents in clinical	3	Thirteent h
Daily, weekly, semester and final exams	Paper lectures -1 Electronic screen -2	Enzymes and their applications in clinical chemistry	reagents in clinical	3	Fourteen th
Daily, weekly, semester and final exams	Paper lectures -1 Electronic screen -2	Enzymes and their applications in clinical chemistry	Seminar. Second exam	3	Fifteenth

	11. Infrastructure
- Lieberman M.A. & Peet A. Marks' Basic Medical	1- Required textbooks
Biochemistry: A Clinical Approach (5th Edition),2017	
-Punekar, N.S.," ENZYMES: Catalysis, Kinetics and	2- Main references (sources)
Mechanisms",2018	
-Murray R.K., Granner D.K., Mayes P.A. & Rodwell V.W.: " <i>Harper's Illustrated Biochemistry</i> ". 29 th ed., Mc Graw-Hill Companies, New York. 2012.	
- Crook M. A. " <i>Clinical Biochemistry & Metabolic Medicine</i> ". Hodder & Stoughton Ltd. 2012	

 Burtis C.A., & Ashwood E.R., and Bruns D. E. "Tietz Text book of clinical chemistry and molecular diagnosis" . 3rd ed., W.B. Saunders Company Philadelphia. 2012<i>j</i> Rodewell V.W., Bender D.A., etal "<i>Harper's Illustrated Biochemistry</i>". 31st ed., Mc Graw-Hill Companies, New York. 2018. 	A- Recommended books and references
Many sites that deal with biochemistry, including	B- Electronic references and
.medical sites	websites

12. Curriculum development plan
Updating the scientific material
Using modern technologies

(Research Methodology) Course Description / Scientific Research Methodology

nce 1. Educational institution	University of Baghdad / College of Science
stry 2. Department/university center	Department of Chemistry
bgy 3. Course name/code	Scientific Research Methodology
kly 4. Available forms of assistance	Weekly
5. Semester/yea	Second Semester 2023-2024
urs 6. Number of hours of study (total	1 hour = 15 x 30 hours
1/1 7. The date this description was prepared	2023/1/1

Learning outcomes, teaching and learning methods and evaluation .9

A- Cognitive objectives

A1- Providing students with knowledge of the foundations of the scientific research methodology .subject

A2- Acquiring knowledge of the correct application of the rules of publishing in global .containers

B- Skill objectives

.B1- Teaching the student how to extract sources

B2- Continuous discussion within the lecture and asking some external questions to expand the student's understanding of the material and the student's continuous participation within the .lecture

Teaching and learning methods

Clarifying the scientific material through multiple examples and creating paper lectures and -1 .using power point technology to clarify solutions and applications

Continuously benefiting from the World Wide Web unit (Internet) by displaying videos related -2 .to the topic

Evaluation methods

Conducting short surprise exams for each student to be aware and continuous reading of -1 .lectures related to the scientific material

Conducting continuous monthly exams and evaluating the reports and research required from -2 .the student

C- Emotional and value objectives

C1- Giving students a number of external questions as homework and giving them the opportunity .to think and find solutions

C2- Motivating students to conduct reports and research on the subjects they study and use .modern technologies in research and develop their research skills such as the Internet

Teaching and learning methods

It is noted that our dear students are aware and conscious that they are graduate students and are committed to reading, attending lectures, conducting monthly and short exams, and abiding by .university laws and regulations

Evaluation methods

Holding some courses and seminars in the department has a major role in educating our dear - .students and constructive discussion between the student and the professor

Academically distinguished students and participants in seminars held in the College of Science - .are evaluated and rewarded

D- General and transferable skills (other skills related to employability and personal .(development

D1- Conducting some scientific debates with other universities or well-known scientific centers and honoring the outstanding students among them. D2- Developing personal skills by giving .poetry debates through their participation in central celebrations held within the university

week	hours	Required learning outcomes	Name of unit/course or topic	Teachin g method	Evaluation method
Firs	1 hour	The student will be able to know the basics of the scientific research methodology material	Research and researcher	electronic screen	Weekly Exams
Secon	1 hour		Hidden knowledges.facts	electronic screen	Weekly Exams
Thir	1 hour	The student will be able to know the basics of the scientific research methodology material and how to choose and prepare the research topic	Structure of a scientific paper	electronic screen	Weekly Exams
Fourt	1 hour	The student will be able to know the structure of the scientific article	Title (features of effective title, types of title)	electronic screen	Weekly Exams
Fift	1 hour	The student will be able to know how to choose the appropriate title, abstract, introduction and conclusions when writing the research article	Publication process	electronic screen	Weekly Exams
Sixt	1 hour	The student will be able to know the steps for publishing the research article	Important terminologies: Research originality	electronic screen	Weekly Exams
Sevent	1 hour	The student will be able to know some terms related to the basics of writing such as original research and valuable research	Related work, literature review	electronic screen	Weekly Exams
Eight	1 hour	Monthly exam			
Nint	1 hour	The student will be able to know how to evaluate research scientifically and whether it is suitable for publication or not and how to make a decision to accept or reject the research for publication	Reviewer's suggestion and editor decision	electronic screen	Weekly Exams
Tent	1 hour	The student will be able to know the electronic research evaluation system and the mechanism for selecting scientific evaluators and how to choose the appropriate journal for publication	Reviewing systems	electronic screen	Weekly Exams
Elevent	1 hour	The student will be able to identify some terms such as Scopus, Clarivate and Thomson Reuters	Web of science, Thomson Reuters, and Scopus	electronic screen	Weekly Exams
Twelft	1 hour	Explain the meaning of the impact factor and Hirsch factor	Impact Factor and h- index	electronic screen	Weekly Exams
Thirteent		Scientific plagiarism and electronic plagiarism	Plagiarism	electronic screen	Weekly Exams
Fourteent		The student will be able to index and write sources using the ENDnote program	Organization Ref. using ENDnote software	electronic screen	Weekly Exams

Monthly exam		Fifteenth
	1 1	1

.12 Infrastructure

-Sources	Required readings:
Web of Science, www.ScienceDirect.Com, www.Scopus.com	Basic texts
	Course books
	Other
There are websites that show explanatory videos on how to organize	Special requirements (including, for example,
sources using	(workshops, periodicals, software, and websites