Ministry of Higher Education and Scientific Research Scientific Supervision and Scientific Evaluation Apparatus Directorate of Quality Assurance and Academic Accreditation Accreditation Department # Academic Program and Course Description Guide # Introduction: The educational program is a well-planned set of courses that include procedures and experiences arranged in the form of an academic syllabus. Its main goal is to improve and build graduates' skills so they are ready for the job market. The program is reviewed and evaluated every year through internal or external audit procedures and programs like the External Examiner Program. The academic program description is a short summary of the main features of the program and its courses. It shows what skills students are working to develop based on the program's goals. This description is very important because it is the main part of getting the program accredited, and it is written by the teaching staff together under the supervision of scientific committees in the scientific departments. This guide, in its second version, includes a description of the academic program after updating the subjects and paragraphs of the previous guide in light of the updates and developments of the educational system in Iraq, which included the description of the academic program in its traditional form (annual, quarterly), as well as the adoption of the academic program description circulated according to the letter of the Department of Studies T 3/2906 on 3/5/2023 regarding the programs that adopt the Bologna Process as the basis for their work. In this regard, we can only emphasize the importance of writing an academic programs and course description to ensure the proper functioning of the educational process. #### **Concepts and terminology:** **Academic Program Description:** The academic program description provides a brief summary of its vision, mission and objectives, including an accurate description of the targeted learning outcomes according to specific learning strategies. <u>Course Description</u>: Provides a brief summary of the most important characteristics of the course and the learning outcomes expected of the students to achieve, proving whether they have made the most of the available learning opportunities. It is derived from the program description. <u>Program Vision:</u> An ambitious picture for the future of the academic program to be sophisticated, inspiring, stimulating, realistic and applicable. <u>Program Mission:</u> Briefly outlines the objectives and activities necessary to achieve them and defines the program's development paths and directions. <u>Program Objectives:</u> They are statements that describe what the academic program intends to achieve within a specific period of time and are measurable and observable. <u>Curriculum Structure:</u> All courses / subjects included in the academic program according to the approved learning system (quarterly, annual, Bologna Process) whether it is a requirement (ministry, university, college and scientific department) with the number of credit hours. **Learning Outcomes:** A compatible set of knowledge, skills and values acquired by students after the successful completion of the academic program and must determine the learning outcomes of each course in a way that achieves the objectives of the program. <u>Teaching and learning strategies:</u> They are the strategies used by the faculty members to develop students' teaching and learning, and they are plans that are followed to reach the learning goals. They describe all classroom and extracurricular activities to achieve the learning outcomes of the program. ### Academic Program Description Form For undergraduate Bachelor's students University Name: University of Baghdad Faculty/Institute: College of Science Scientific Department: Biotechnology department. Academic or Professional Program: Biotechnology Final Certificate Name: Bachelor's degree in Biotechnology Academic System: Seasonal Description Preparation Date: 1-10-2024 File Completion Date: 1-10-2024 Signature: H. Wak Head of Department name: Prof. Dr. Nadhim Hasan Hayder Date: Signature: Scientific Associate name: Prof. Dr. Namir I. A. Haddad Date: The file is checked by: Prof. Dr. Israa Ali Zaidan Department of Quality Assurance and University Performance Director of the Quality Assurance and University Performance Department: Date: Signature: ISVall Approval of the Dean: Assis. Prof. Dr. Raed Falih Hassan #### 1. Program Vision The Department of Biotechnology looks forward to using biological systems of various types, cellular or enzymatic, to obtain many of the vital materials that society needs in various agricultural, industrial, medical, or environmental fields. This comes by benefiting from research at the laboratory level and then applied by building strategies for projects. Scientific, and therefore the science of biotechnology depends on specialists in the sciences of biochemistry, microbiology, and engineering sciences, and cooperation among themselves to reach the applied aspects of microbiology and animal and plant cell cultures to benefit from them in the development of industry, agriculture, and the advancement of health and other service institutions. #### 2. Program Mission Preparing specialized personnel in the fields of biotechnology and providing them with upto-date information in various fields of contemporary life, genetically engineering living organisms, searching for sites of modification, medical biotechnologies, producing pharmaceutical compounds, environmental reclamation to get rid of air, soil and water pollutants, and investing microorganisms in extracting valuable materials and biotechnologies. Plants and making full use of plant products and farms. As well as interest in scientific specializations that would employ the characteristics of living organisms to produce biological materials and educate society on how to exploit these capabilities in various areas of life, taking into account preserving the basic characteristics of these organisms and their diversity and not disturbing the natural biological balance. #### 3. Program Objectives - 1. Preparing specialists familiar with the basics of biotechnology, theoretically and practically, who are able to fill the needs of the labor market. - 2. Conduct scientific research and try to keep pace with the scientific development of biotechnology. - 3. Cooperating with state institutions and the private sector by providing advice and scientific advice and conducting laboratory analyzes in the fields of genetic, environmental, industrial and microbiology engineering. - 4. Encouraging scientific research and providing students with basic skills in biotechnology and its applications in all fields. - 5. Encouraging the academic staff to participate in scientific forums inside and outside the country. - 6. Contributing to solving scientific problems in the service of national development plans. # 4. Program Accreditation None # 5. Other external influences None | 6. Program Struc | ture | | | | |-------------------|-----------|--------|------------|------------------------------------| | Program Structure | Number of | Credit | Percentage | Reviews* | | | Courses | hours | | | | Institution | | | | Computer skills | | Requirements | | | | English language | | Requirements | 5 | 10 | | Freedom and Democracy | | | | | | Human rights | | | | | | Baath Party crimes | | College | | | | Biostatistics | | | | | | Physics | | Requirements | | | | Analytical chemistry and | | | 6 | 7 | | instrumental analysis | | | | | | Organic chemistry | | | | | | Biochemistry 1 | | | | | | Biochemistry 2 | | Department | | | | All core and elective subjects for | | Doguiromento | 34 | 102 | | stages 2, 3 and 4 | | Requirements | | | | 5tages 2, 3 and 4 | | Summer Training | 1 | | | After the third stage | | Other | | | | | ^{*} This can include notes whether the course is basic or optional. | 7. Program Description | | | | | | | | | | | |------------------------|----------------|--------------------------------|---------------|-------------|--|--|--|--|--|--| | Year/Level | Course
Code | Course Name | Credit I | Hours | | | | | | | | | | 3 rd stage | <u>'</u> | | | | | | | | | First semester | BIOT300 | Molecular biology | 2 Theoretical | 2 Practical | | | | | | | | 2023-2024 | BIOT310 | Plant biotechnology | 2 Theoretical | 2 Practical | | | | | | | | | BIOT215 | Gene and biochemical technique | 2 Theoretical | 2 Practical | | | | | | | | | BIOT305 | Pathogenic bacteria | 2 Theoretical | 2 Practical | | | | | | | | | BIOT320 | Fermentation technology | 2 Theoretical | 2 Practical | | | | | | | | | BIOL330 | Mycology | 2 Theoretical | 2 Practical | | | | | | | | Second semester | BIOT345 | Microbial genetics | 2 Theoretical | 2 Practical | |--------------------------|--------------------------------------|--|---------------|-------------| | 2023-2024 | BIOT315 | Food microtechnology | 2 Theoretical | 2 Practical | | | BIOT325 | Antibiotics | 2 Theoretical | 2 Practical | | | BIOT330 | Immunology | 2 Theoretical | 2 Practical | | | BIOT335 | Environmental biotechnology | 2 Theoretical | 2 Practical | | | BIOT340 | Nanobiotechnology | 2 Theoretical | 2 Practical | | | 314 GS | English language | 2 Theoretical | | | | | Research methodology | 1 Theoretical | | | | | 4 th stage | | | | | BIOT400 | Principles of genetic engineering | 2 Theoretical | 2 Practical | | | BIOT405 | Animal tissue culture | 2 Theoretical | 2 Practical | | Einet as market | BIOT410 Plant tissue culture | | 2 Theoretical | 2 Practical | | First semester 2023-2024 | RICITAL Principles of Immunoganatics | | 2 Theoretical | 2 Practical | | 2023-2024 | BIOT435 | Virology and vaccines | 2 Theoretical | 2 Practical | | | 414 GS | English language | 2 Theoretical | - | | | PROJ401 | Graduation Project | - | 2 Practical | | | | | | | | |
BIOT415 | Applications of genetic engineering | 2 Theoretical | 2 Practical | | | BIOT420 | Cytogenetics | 2 Theoretical | 2 Practical | | Second semester | BIOT425 | Industrial biotechnology | 2 Theoretical | 2 Practical | | 2023-2024 | BIOT445 | Genetic diseases and molecular diagnosis | 2 Theoretical | 2 Practical | | | BIOT350 | Application of Animal tissue culture | 2 Theoretical | 2 Practical | | | PROJ402 | Graduation Project | - | 2 Practical | | | | | | | #### 8. Expected learning outcomes of the program #### Knowledge - 1. Enabling students to obtain knowledge and understanding of the intellectual framework, foundations and applications of bio- and nano-technology - 2. Enabling students to obtain knowledge and understanding of industrial, environmental and food microbiology - 3. Enabling students to obtain knowledge and understanding of genetics, genetic engineering, and cellular genetics - 4. Enabling students to obtain knowledge and understanding of botany, plant and animal tissues and their applications - 5. Enabling students to obtain knowledge and understanding of pathology, immunity, and pathogenic bacteria - 6. Enable students to obtain knowledge and understanding of cell science and microbiology standards 7. Enabling students to obtain knowledge and understanding of life statistics and the English language #### Skills - 1. Scientific and practical skills. - 2. Memorization and analysis skills. - 3. Skills of use, application and development. - 4. General and qualifying transferable skills (other skills related to employability and personal development). #### **Ethics** - 1-Openness about the methods, intentions, and potential consequences of biotechnology research and applications. - 2-Recognizing the intrinsic value of all living organisms and considering their well-being in biotechnological endeavors. - 3-Strive to use biotechnology to enhance the well-being of individuals and society while minimizing harm and commit to honesty, accuracy and reliability in conducting and reporting biotechnology research - 4-Ensure equitable distribution of the benefits and burdens of progress in biotechnology across different societies and socio-economic groups. - 5-Take responsibility for the environmental impacts of biotechnology activities and work to find sustainable solutions. - 6-Respect the rights of individuals to make informed decisions about their health care and to participate in medical interventions or clinical trials. Implementing medical treatments or treatments and protecting the privacy and confidentiality of patient information and genetic data in research - 7-Ensure that patients or participants fully understand the risks, benefits, and alternatives of medical procedures or participation in research studies before providing consent - 8-Upholding strict standards for the safety and effectiveness of pharmaceutical products through transparent research, testing and regulatory processes. #### 9. Teaching and Learning Strategies Teaching and learning strategies and methods adopted in the implementation of the program in general. #### 10. Evaluation methods Weekly, monthly, daily exams and the end-of-semester exam. #### 11. Faculty #### **Faculty Members** | Academic Rank | Specialization | | Requirem | ecial
nents/Skills
blicable) | Number of the teaching staff | | | |----------------------|----------------|---------|----------|------------------------------------|------------------------------|----------|--| | | General | Special | | | Staff | Lecturer | | | Professor | 17 | | | | 17 | | | | Assistant professor | 18 | | | | 18 | | | | Instructor | 42 | | | | 42 | | | | Assistant instructor | 50 | | | | 50 | | | #### 12. Professional Development #### Mentoring new faculty members Participating in courses on teaching methods, Arabic and English language proficiency, passing the teaching aptitude exam, and other professional teaching courses. #### Professional development of faculty members - 1. Training in evaluating teaching performance of all types and giving it importance in educational and development courses. - 2. Attending training courses. - 3. Attending continuing education courses and seminars. - 4. Online learning. - 5- Discussions inside and outside the work environment, which helps in career development. #### 13. Acceptance Criterion Admission to the Biotechnology Department program in the College of Science is based on the grade point average and the student's interest in the department. #### 14. The most important sources of information about the program All biotechnology programs combine multiple areas of science and technology with research and development for many types of organisms. Subjects cover a wide range of scientific topics, from microbiology, chemistry and molecular biology to genetic engineering, pharmacology and virology. As well as cloning, fermentation, tissue culture and immunology. In the practical part in the laboratories, students learn different techniques and processes to work with DNA, bacteria, plant cells and much more. Biotechnology programs are offered as a four-year bachelor's degree, after which the participant obtains a bachelor's degree in biotechnology. #### 15. Program Development Plan - Implementing a review and development policy for academic programs and the goals and strategies included in the strategic plan of the Department of Biotechnology, and reviewing programs and courses. - Work on submitting proposals to begin the review process for programs that have completed four years from the last academic review, and follow up on reviewing courses every two semesters through program officials and course coordinators. - The department seeks to obtain local or international program accreditation, such as the biotechnology program, audit quality in the institutional program, and review and develop policy procedures for counterpart biotechnology departments in other colleges. - Forming a technical committee for quality assurance to follow up on the department's efforts in preparing evaluation reports against institutional standards as part of the college's efforts to obtain institutional accreditation. | 16.Program S | kills Outli | ine | | | | | | | | | | | | | | |---|-------------|--------------------------------|-------------|-----------|-----------|-----------|-----------|----------|-----------|-------|-----------|-----------|-----------|-----------|-----------| | | | | | | | | Req | uired | progr | am L | earnin | g outco | mes | | | | Year/Level | Course | Course Name | Basic
or | Kilowieu | | ledge | | Skills | | | Ethics | | | | | | 2023/2024 | Code | Course Name | optional | A1 | A2 | A3 | A4 | B1 | B2 | В3 | B4 | C1 | C2 | С3 | C4 | | 3 rd stage
1 st semester | BIOT300 | Molecular biology | Basic | V | $\sqrt{}$ | $\sqrt{}$ | $\sqrt{}$ | √ | | √
 | $\sqrt{}$ | $\sqrt{}$ | √
 | $\sqrt{}$ | $\sqrt{}$ | | | BIOT310 | Plant biotechnology | Basic | | $\sqrt{}$ | | | | | | $\sqrt{}$ | $\sqrt{}$ | | $\sqrt{}$ | $\sqrt{}$ | | | BIOT215 | Gene and biochemical technique | Basic | 1 | V | V | V | V | V | 1 | V | V | V | 1 | V | | | BIOT305 | Pathogenic bacteria | Basic | 1 | 1 | √ | V | | $\sqrt{}$ | V | $\sqrt{}$ | V | √ | √ | $\sqrt{}$ | | | BIOT320 | Fermentation technology | Basic | V | V | √ | V | √ | $\sqrt{}$ | V | $\sqrt{}$ | V | V | V | √ | | | BIOL330 | Mycology | Basic | √ | 1 | V | V | V | V | 1 | $\sqrt{}$ | V | V | 1 | V | | 3 rd stage
2 nd semester | BIOT345 | Microbial genetics | Basic | V | V | V | V | √ | V | V | V | V | V | V | V | | | BIOT315 | Food microtechnology | Basic | 1 | V | V | V | V | V | V | 1 | V | V | 1 | V | | | BIOT325 | Antibiotics | Basic | √ | V | √ | V | V | $\sqrt{}$ | V | $\sqrt{}$ | V | V | V | V | | | BIOT330 | Immunology | Basic | V | V | V | V | V | $\sqrt{}$ | V | 1 | V | V | 1 | $\sqrt{}$ | | | BIOT335 | Environmental biotechnology | Basic | V | V | V | V | V | V | V | V | V | V | V | V | |---|---------|--|----------|-----------|---|----------|----------|----------|---|----------|---|---|---|---|---| | | BIOT340 | Nanobiotechnology | Basic | V | V | √ | V | V | V | V | V | V | V | V | V | | | 314 GS | English language | Basic | V | V | V | V | V | 1 | 1 | V | V | V | 1 | V | | | | Research methodology | Basic | $\sqrt{}$ | V | V | V | V | 1 | V | V | V | V | 1 | V | | 4 th stage
1 st semester | BIOT400 | Principles of genetic engineering | Basic | V | V | V | V | V | V | V | V | V | V | V | V | | | BIOT405 | Animal tissue culture | Basic | V | V | √ | V | √ | 1 | V | V | V | V | 1 | V | | | BIOT410 | Plant tissue culture | Basic | V | V | V | V | V | 1 | 1 | V | V | V | 1 | V | | | BIOT430 | Principles of Immunogenetics | optional | V | V | V | V | V | V | V | V | V | V | √ | V | | | BIOT435 | Virology and vaccines | optional | V | V | √ | V | √ | 1 | V | V | V | V | 1 | V | | | 414 GS | English language | Basic | $\sqrt{}$ | V | V | V | V | 1 | V | V | V | V | 1 | V | | | PROJ401 | Graduation Project | Basic | $\sqrt{}$ | V | V | √ | √ | √ | √ | V | V | V | √ | V | | 4 th stage
2 nd semester | BIOT415 | Applications of genetic engineering | Basic | V | V | V | V | V | V | V | V | √ | V | V | V | | | BIOT420 | Cytogenetics | Basic | V | V | 1 | V | V | 1 | V | V | V | V | 1 | V | | | BIOT425 | Industrial biotechnology | Basic | V | V | V | V | V | 1 | V | V | V | V | 1 | V | | | BIOT445 | Genetic diseases and molecular diagnosis | optional | V | V | V | V | V | V | V | V | 1 | V | V | V | | | BIOT350 | Application of Animal tissue culture | optional | V | V | V | V | V
 V | V | V | V | V | V | V | |--|---------|--------------------------------------|----------|---|---|---|--------------|--------------|--------------|---|----------|-----------|---|---|-----------| | | PROJ402 | Graduation Project | Basic | V | √ | 1 | \checkmark | \checkmark | \checkmark | V | √ | $\sqrt{}$ | V | V | $\sqrt{}$ | Please tick the boxes corresponding to the individual program learning outcomes under evaluation. # Course Description Form for the 3rd stage subjects #### Molecular biology 1. Course Name: Molecular Biology 2. Course Code: **BIOT300** 3. Semester / Year: 2nd semester / 2024-2025 4. Description Preparation Date: 1-10-2024 5. Available Attendance Forms: Weekly attendance #### 6. Number of Credit Hours (Total) / Number of Units (Total) 2 Theoretical hours/week, one section * 15 weeks = 30 hours 4 Practical hours/week per section * 15 weeks = 60 hours Total number of hours per section = 90 hours Number of units = 3 units (theoretical 2 +practical 1) 7. Course administrator's name (mention all, if more than one name) Name: Prof. Dr. Nuha Joseph Najeeb Kandala Email:nuha.najeeb@sc.uobaghdad.edu.iq #### 8. Course Objectives This course covers the concepts of molecular biology, introducing students to one of its fundamental branches, which is molecular biology. This branch entails the study of the molecular nature of large molecules such as DNA, RNA, and proteins, along with the biological information associated with them. The course includes an introduction and a historical overview of the development of molecular biology, a comprehensive understanding of cellular functions at the molecular level in both prokaryotic and eukaryotic cells, types of nucleic acids and their chemical structures, characteristics and features of DNA and RNA, DNA replication, the discovery of the genetic code, gene expression (transcription), the basic steps of transcription, and the enzymes responsible for transcription in prokaryotic and eukaryotic cells. The translation also includes primitive and true nucleus, types of functional and structural proteins, types of RNA, regulation of gene expression in prokaryotic and eukaryotic cells, and an introduction to genetic engineering. This course description provides a concise summary of the main features of the course and the expected learning outcomes for students, ensuring whether they have maximized their learning and educational opportunities. #### 9. Teaching and Learning Strategies - 1. Clarification and explanation of the study materials by the academic staff through the whiteboard or using PowerPoint. - 2. Providing students with homework. - 3. Preparing reports related to academic vocabulary. - 4. Visit websites to obtain additional knowledge of academic subjects. - 5. Brainstorming during lectures. | 10. | Course | Structure: | Theory | |------------|--------|-------------------|--------| |------------|--------|-------------------|--------| | 10. | 0 022 0 | e Structure. In | | T 1 / | | |-----------------|---------|--|--|---|--| | Week | Hours | Unit or subject name | Required Learning Outcomes | Learning method | Evaluati
on
method | | 1 st | 2 | History of
molecular
biology | A-Introduction of molecular biology B-Definition of Molecular biology B-Identified DNA as the primary agent of genetic material C-key experiments which identified DNA as the primary genetic material D-The two major piece of evidence supporting DNA as the genetics material | Paper lectures
Electronic screen
Video lectures via
electronic classes | Daily,
semester
and final
exams | | 2 nd | 2 | The chemical composition of nucleic acid | A-The chemical composition of nucleic acid B-The structure of DNA and RNA. C-What is the structure of DNA? How is the structure related function? D-Chargaff's Law: the experiment, examples of Chargaff's Law applications. E-Some studies of DNA structure | Paper lectures
Electronic screen
Video lectures via
electronic classes | Daily,
semester
and final
exams | | | | | A-The Watson and | | | |-----------------|---|---|--|---|--| | 3 rd | 2 | The Watson
and Crick
model | Crickmodel. B-Watson andF.H.C. CrickPhysical characteristics of the model C-Base Pairs and Stacking D-Alternative DNA Structures E-Compare between prokaryotic and eukaryotic cells F-DNA and RNA Molecules in different types of cells | Paper lectures
Electronic screen
Video lectures via
electronic classes | Daily,
semester
and final
exams | | 4 th | 2 | Structure of
DNA in the
Cell | A-Different types of nucleic acid B-Supercoiling is Necessary for Packaging of Bacterial DNA C-The Eukaryotic Nucleosome. D-Some examples of genome in different organisms | Paper lectures
Electronic screen
Video lectures via
electronic classes | Daily,
semester
and final
exams | | 5 th | 2 | Replication
process in
prokaryotic
cells | A-DNA Replication Introduction to Prokaryotic replication B-Mechanism of DNA replication C-Stages of replication process(initiation ,elongation and termination) D-Types of enzymes in stages of replication | Paper lectures
Electronic screen
Video lectures via
electronic classes | Daily,
semester
and final
exams | | 6 th | 2 | Replication
process in
Euokaryotic
cells | A-Eukaryotic
Chromosomes
B-Synthesis of
Eukaryotic DNA | | | | 7th | 2 | Exam | C-Types of enzymes in stages of replication D- Stages of replication process E-Cell Division in Higher Organisms. | | | |------------------|----------|--|---|---|--| | | <u> </u> | Exam | Types of RNA | | Dailer | | 8 th | 2 | Introduction to Gene Expression | The structure of RNAs Genetic code Characterization of Genetic code | Paper lectures
Electronic screen
Video lectures via
electronic classes | Daily,
semester
and final
exams | | 9 th | 2 | First process
in Gene
expression:
The
transcription
process | A-Transcription process in prokaryotic and eukaryotic cells B-Stages of transcription C-Enzymes in transcription stages | Paper lectures
Electronic screen
Video lectures via
electronic classes | Daily,
semester
and final
exams | | 10 th | 2 | Exam | Exam | | | | 11 th | 2 | Processing
and
modification
of pre-mRNA
in eukaryotic
cells | A-Modification methods: 1-Add cap in 5UTR 2-Add poly A in 3UTR B-Splicing methods | Paper lectures
Electronic screen
Video lectures via
electronic classes | Daily,
semester
and final
exams | | 12 th | 2 | Protein
structure
and function | A-Types of proteins B- the types of amino acids C-classification of amino acids according to function and structure D-characteristic of Genetics code | | | | 13 th | 2 | Translation process | A-Translation process in prokaryotic and eukaryotic cells B-Stages of translation . | Paper lectures
Electronic screen
Video lectures via
electronic classes | Daily,
semester
and final
exams | | 14 th | 2 | Types of DNA sequencing in Eukaryotes cells | C-Enzymes in translation stages D-compare between prokaryotes and eukaryotes cells in transcription and translation process A-Types of methods for study the sequence of DNA. B-Types of sequences in DNA | Paper lectures
Electronic screen
Video lectures via
electronic classes | Daily,
semester
and final
exams | |------------------|----------|---|---|---|--| | 15 | <u> </u> | rinai exam | | | | | Cours | e Str | ucture: Practic | <u> </u>
al | | | | Week | Hours | Unit or
subject name | Required Learning Outcomes | Learning method | Evaluati
on
method | | 1 st | 2 | The laboratory apparatus and equipment | Introduction to
the The laboratory
apparatus and
equipment | Paper lectures
Electronic screen
Video lectures via
electronic classes | Daily,
semester
and final
exams | | 2 nd | 2 | Determination of small liquid volumes. | 1. Positive displaceme nt and air displaceme nt. 2. Obtaining precise measureme nts with the micropipette. 3. Avoiding contaminati on of the micropipette. 4. Method of use. | Paper lectures
Electronic screen
Video lectures via
electronic classes | Daily,
semester
and final
exams | | | | | 5. Verificatio n of the micro- pipette's functionalit y. 6. Cleaning and storage of the micro- pipette." | | | |-----------------|---
---|--|---|--| | 3rd | 2 | "Preparation
of Buffers and
Laboratory
Solutions." | "Understanding Different Types of Chemical Substances and the Laws Governing Their Preparation." | Paper lectures
Electronic screen
Video lectures via
electronic classes | Daily,
semester
and final
exams | | 4 th | 2 | Exam | | | D." | | 5 th | 2 | "General
Introduction to
Nucleic Acid
Extraction." | "The Basic Steps of
Extraction from
Various Sources." | Paper lectures
Electronic screen
Video lectures via
electronic classes | Daily,
semester
and final
exams | | 6 th | 2 | DNA
extraction
from bacteria | "Preparation of
Bacterial Samples
and Solutions Used
for Extraction, and
Understanding the
Sequential Steps
Involved." | Paper lectures
Electronic screen
Video lectures via
electronic classes | Daily,
semester
and final
exams | | 7 th | 2 | DNA
extraction
from blood | "Preparation of
blood Samples and
Solutions Used for
Extraction, and
Understanding the
Sequential Steps
Involved." | Paper lectures
Electronic screen
Video lectures via
electronic classes | Daily,
semester
and final
exams | | 8 th | 2 | DNA
extraction
from plant | Preparation of plant Samples and Solutions Used for Extraction, and Understanding the Sequential Steps Involved." | Paper lectures
Electronic screen
Video lectures via
electronic classes | Daily,
semester
and final
exams | | 9 th | 2 | Exam | | | | |------------------|---|--|---|---|--| | 10 th | 2 | RNA
extraction
methods | "The different methods for RNA extraction include preparation techniques for solutions and the use of the manual method as well as the kit-based extraction." | | | | 11 th | 2 | Measure the concentration and purity of nucleic acid | "Understanding the
Wavelengths Used
for Measuring
Concentration and
Purity." | Paper lectures
Electronic screen
Video lectures via
electronic classes | Daily,
semester
and final
exams | | 12 th | 2 | Gel electrophoresi s Part 1 | General
understanding to the
gel electrophoresis
method | | | | 13 th | 2 | Gel
electrophoresi
s
Part 2 | General
understanding to the
gel electrophoresis
method | Paper lectures
Electronic screen
Video lectures via
electronic classes | Daily,
semester
and final
exams | | 14 th | 2 | "Measuring
the Melting
Temperature
of
Deoxyribonuc
leic Acid
(DNA)." | Definition of Melting Temperature (Tm), The Basic Principle of Melting Temperature, Experimental Measurement of Melting Temperature (Tm)." | Paper lectures
Electronic screen
Video lectures via
electronic classes | Daily,
semester
and final
exams | | 15 th | 2 | Final exam | • ` ` ` | | | | | | | | | | #### 11. Course Evaluation Overall score out of 100 (Semester grade = 40, including: 25 for theoretical + 15 for practical) (End-of-semester exam score = 60, including 40 for theory + 20 for practical) #### 12. Learning and Teaching Resources | Required textbo | Molecular Biology Authored by Dr. Ghalib Al-Bakri" | | |----------------------------|--|--| | (curricular books, if any) | | | | Main references (sources) | | | | Recommended books and | 1-Analysis of Genes and Genomes . | | | references (scientific | by Richard .J .Reece 2004 . | | | journals, reports) | 2-Genetics. | | | , <u>,</u> | By Leland ,H.Hartwell.;Leroy | | | | Hood.;Michael,L.Goldbereg | | | | .;Ann,E.Reynolodset al., .2000. | | | | 3-Essential of Genetics. | | | | By Williams, S. Klug | | | | anMichael,R.Cummings.2002.fifth edition. | | | | | | | Electronic-References, | https://drive.google.com/file/d/1Ao2R1fWEy02I | | | Websites | 4ZmcB4hpBJSmLt4s7jMG/view | | | | https://youtu.be/yYIZgS-L5Sc | | | | https:\\youtu.be\q6PP-C4udkA | | | | https://www.thermofisher.com/iq/en/home/brand | | | | s/invitrogen/molecular-biology-technologies | | | | https://www.youtube.com/watch?v=DT5CSgNu6 | | | | 1Y | | | | | | # **Plant Biotechnology** | 1. Course Name: | | | | | | |---|--|--|--|--|--| | Plant Biotechnology | | | | | | | 2. Course Code: | | | | | | | BIOT310 | | | | | | | 3. Semester / Year: | | | | | | | 1stsemester / 2024-2025 | | | | | | | 4. Description Preparation Date: | | | | | | | 1-10-2024 | | | | | | | 5. Available Attendance Forms: | | | | | | | Weekly attendance | | | | | | | 6. Number of Credit Hours (Total) / Number of Units (Total) | | | | | | | 2 Theoretical hours/week, one section * 15 weeks = 30 hours | | | | | | | 4 Practical hours/week per section * 15 weeks = 60 hours | | | | | | | Total number of hours per section = 90 hours | | | | | | | Number of units = 3 units (theoretical 2 + practical 1) | | | | | | | 7. Course administrator's name (mention all, if more than one name) | | | | | | | Name: Assist . Prof. Dr. Majid Rasheed Majeed | | | | | | | Email: | | | | | | #### 8. Course Objectives This course aims to provide a course of study in the plant biotechnology, plant extraction, its role in the medical and pharmaceutical fields. To develop more practical biological skills in the plant biotechnology. #### 9. Teaching and Learning Strategies - 1. Clarification and explanation of the study materials by the academic staff through the whiteboard or using PowerPoint. - 2. Providing students with homework. - 3. Preparing reports related to academic vocabulary. - 4. Visit websites to obtain additional knowledge of academic subjects. - 5. Brainstorming during lectures. | 10. | Course | Structure: | Theory | |------------|--------|-------------------|--------| |------------|--------|-------------------|--------| | Week | Hours | Unit or subject name | Required Learning Outcomes | Learning method | Evaluation
method | |-----------------|-------|--|---------------------------------------|---|---------------------------------------| | 1 st | 2 | Introduction to biotechnology | definitions, scientific research, | Paper lectures
Electronic screen
Video lectures via
electronic classes | Daily,
semester and
final exams | | 2 nd | 2 | What is plant
biotechnology
(introduction) | General function, types, | Paper lectures
Electronic screen
Video lectures via
electronic classes | Daily,
semester and
final exams | | 3 rd | 2 | Secondary
metabolites,
classification:
Terpenoids | General function,
types, structure | Paper lectures
Electronic screen
Video lectures via
electronic classes | Daily,
semester and
final exams | | 4 th | 2 | Nitrogen
containing
compounds | General function, , structure | Paper lectures
Electronic screen
Video lectures via
electronic classes | Daily,
semester and
final exams | | 5 th | 2 | Phenolics | General function,
types, structure | Paper lectures
Electronic screen
Video lectures via
electronic classes | Daily,
semester and
final exams | | 6 th | 2 | Production of
secondary
metabolites in
culture | General function,
types, structure | Paper lectures
Electronic screen
Video lectures via
electronic classes | Daily,
semester and
final exams | | 7 th | 2 | Elicitors and hairy roots | General function, types, structure | Paper lectures
Electronic screen
Video lectures via
electronic classes | Daily,
semester and
final exams | |------------------|--------|---|--|---|---------------------------------------| | 8 th | 2 | First Mid.
Exam. | | | | | 9 th | 2 | Bioreactors | General function, structure | Paper lectures
Electronic screen
Video lectures via
electronic classes | Daily,
semester and
final exams | | 10 th | 2 | Transgenic
plants:
Agrobacterium,
Expression | Learn about the importance of Transgenic plants: Agrobacterium | Paper lectures
Electronic screen
Video lectures via
electronic classes | Daily,
semester and
final exams | | 11 th | 2 | Bt, herbicide
and virus
resistant plants | General function, structure and types | Paper lectures
Electronic screen
Video lectures via
electronic classes | Daily,
semester and
final exams | | 12 th | 2 | Methods of DNA transformation to plant cell | Learn about the importance of DNA transformation | Paper lectures
Electronic screen
Video lectures via
electronic classes | Daily,
semester and
final exams | | 13 th | 2 | DNA
transformation
in protoplast | General function, structure and types | Paper lectures
Electronic screen
Video lectures via
electronic classes | Daily,
semester and
final exams | | 14 th | 2 | DNA
transformation
in tissue | General function, structure and types | Paper lectures
Electronic screen
Video lectures via
electronic classes | Daily,
semester and
final exams | | 15 th | 2 | Second
Mid.
Exam. | | | | | Cours | se Str | ucture: Practic | al | | _ | | Week | Hours | Unit or subject name | Required Learning
Outcomes | Learning method | Evaluation
method | | 1 st | 2 | Significance of medicinal plants to human being | Learn about the importance of medicinal and industrial plants | Paper lectures
Electronic screen
Video lectures via
electronic classes | Daily,
semester and
final exams | | 2 nd | 2 | Extraction
techniques of
medicinal
plants | Extraction of medicinal plants | Paper lectures
Electronic screen
Video lectures via
electronic classes | Daily,
semester and
final exams | |------------------|---|--|--|---|---------------------------------------| | 3 rd | 2 | Some of Plant
Secondary
Metabolites
(Terpenoids) | Extraction of Terpenoids | Paper lectures
Electronic screen
Video lectures via
electronic classes | Daily,
semester and
final exams | | 4 th | 2 | Some of Plant
Secondary
Metabolites
(Essential Oils) | Extraction of
Essential Oils | Paper lectures
Electronic screen
Video lectures via
electronic classes | Daily,
semester and
final exams | | 5 th | 2 | Some of Plant
Secondary
Metabolites
(Alkaloids) | Extraction of Alkaloids | Paper lectures
Electronic screen
Video lectures via
electronic classes | Daily,
semester and
final exams | | 6 th | 2 | Some of Plant Secondary Metabolites (Drug application of Alkaloids) | Learn about the importance of Drug application of Alkaloids) | Paper lectures
Electronic screen
Video lectures via
electronic classes | Daily,
semester and
final exams | | 7 th | 2 | Some of Plant
Secondary
Metabolites
Phenolic
compounds
(phenols) | Extraction of Phenolic compounds | Paper lectures
Electronic screen
Video lectures via
electronic classes | Daily,
semester and
final exams | | 8 th | 2 | Some of Plant
Secondary
Metabolites
Tannins | Extraction of Tannins compounds | Paper lectures
Electronic screen
Video lectures via
electronic classes | Daily,
semester and
final exams | | 9 th | 2 | Exam | | | | | 10 th | 2 | Some of Plant
Secondary
Metabolites
(Flavonoids) | Extraction of
Flavonoids | Paper lectures
Electronic screen
Video lectures via
electronic classes | Daily,
semester and
final exams | | 11 th | 2 | Separation and isolation techniques | Learn about the importance of Secondary Metabolites | Paper lectures
Electronic screen
Video lectures via
electronic classes | Daily,
semester and
final exams | | 12 th | 2 | Cellular
Biotechnology
for Obtaining
Medicinal
Plants | Importance Some of
Plant Secondary
Metabolites for
Obtaining Medicinal
Plants | Paper lectures
Electronic screen
Video lectures via
electronic classes | Daily,
semester and
final exams | |------------------|---|---|---|---|---------------------------------------| | 13 th | 2 | Regulation of
synthesis of
secondary
compounds | Importance of
synthesis of Secondary
Metabolites | Paper lectures
Electronic screen
Video lectures via
electronic classes | Daily,
semester and
final exams | | 14 th | 2 | The relationship
of
nanotechnology
with plant
biotechnology | Importance of
synthesis of Secondary
Metabolites with
nanotechnology | Paper lectures
Electronic screen
Video lectures via
electronic classes | Daily,
semester and
final exams | | 15 th | 2 | Exam | | | | #### 11. Course Evaluation Overall score out of 100 (Semester grade = 40, including: 25 for theoretical + 15 for practical) (End-of-semester exam score = 60, including 40 for theory + 20 for practical) | (Line-of-schiester exam score = 60, including 40 for theory + 20 for practical) | | | | | |---|--|--|--|--| | 12. Learning and Teaching | g Resources | | | | | Required textbo | Plant biotechnology, K.G. Ramawat 2008 | | | | | (curricular books, if any) | | | | | | Main references (sources) | PLANT BIOTECHNOLOGY AND TRANSBENIC | | | | | | PLANTS | | | | | | By: KIRSI-MARJA OKSMAH-CALDENTEY and | | | | | | WOLFGANG H. BARZ/ 2002 | | | | | Recommended books and | Plant Biotechnology: Recent Advancements and | | | | | references (scientific | Developments | | | | | journals, reports) | By:Suresh Kumar Gahlawat • Raj Kumar and Salar | | | | | y , 1 | Priyanka Siwach/ 2007 | | | | | Electronic Reference | PRINCIPLES OF PLANT BIOTECHNOLOGY | | | | | Websites | ICAR eCourse / 2015 | | | | # Gene and biochemical technique | 1. Course Name: | | | | | | |--------------------------------------|--|--|--|--|--| | Gene and biochemical technique | | | | | | | 2. Course Code: | | | | | | | BIOT215 | | | | | | | 3. Semester / Year: | | | | | | | 1 nd semester / 2024-2025 | | | | | | | 4. Description Preparation Date: | | | | | | | 1-10-2024 | | | | | | #### 5. Available Attendance Forms: #### Weekly attendance #### 6. Number of Credit Hours (Total) / Number of Units (Total) 2 Theoretical hours/week, one section * 15 weeks = 30 hours 4 Practical hours/week per section * 15 weeks = 60 hours Total number of hours per section = 90 hours Number of units = 3 units (theoretical 2 +practical 1) #### 7. Course administrator's name (mention all, if more than one name) Name: Prof. Dr. Asmaa Mohammed Saud Email: asmaa.saud@sc.uobaghdad.edu.iq #### 8. Course Objectives This course aims to deal with the cellular products of proteins, enzymes, and other living organisms, whether microorganisms, plants, or animals, in order to achieve the maximum benefit from them medically, therapeutically, nutritionally, industrially, agriculturally, and economically. To prepare students for a number of natural science courses in identifying important methods for purifying the vital materials of all organisms and estimating their weights to benefit from them at all levels. #### 9. Teaching and Learning Strategies - 1. Clarification and explanation of the study materials by the academic staff through the whiteboard or using PowerPoint. - 2. Providing students with homework. - 3. Preparing reports related to academic vocabulary. - 4. Visit websites to obtain additional knowledge of academic subjects. - 5. Brainstorming during lectures. #### 10. Course Structure: Theory | Week | Hours | Unit or subject name | Required Learning
Outcomes | Learning method | Evaluation
method | |-----------------|-------|--|---|---|---------------------------------------| | 1 st | 2 | Introduction - Extraction of proteins by different source | - Protein purification | Paper lectures
Electronic screen
Video lectures via
electronic classes | Daily,
semester and
final exams | | 2 nd | 2 | Ammonium
sulfate
precipitation,
saturation table, | Precipitation and differential solubilization | Paper lectures
Electronic screen
Video lectures via
electronic classes | Daily,
semester and
final exams | | 3rd | 2 | Removing the ammonium sulphate by Dialysis, | Dialysis
Ultracentrifugation | Paper lectures
Electronic screen
Video lectures via
electronic classes | Daily,
semester and
final exams | | 4 th | 2 | Examples and applications | Preparing a
Purification Table | Paper lectures
Electronic screen
Video lectures via
electronic classes | Daily,
semester and
final exams | |------------------|---|--|---|---|---------------------------------------| | 5 th | 2 | Ion exchange resins contain charged groups, Some Biochemically Useful Ion Exchangers. | Column
chromatography | Paper lectures
Electronic screen
Video lectures via
electronic classes | Daily,
semester and
final exams | | 6 th | 2 | | Seasonal Exam | | | | 7 th | 2 | Types of gels used, Advantages of Gel filtration, Applications of gel filtration | Gel filtration chromatography | Paper lectures
Electronic screen
Video lectures via
electronic classes | Daily,
semester and
final exams | | 8 th | 2 | Example and applications | Estimation of molecular weight by gel filtration: | Paper lectures Electronic screen Video lectures via electronic classes | Daily,
semester and
final exams | | 9 th | 2 | - Reversible Denaturing of DNA, Gene Technology | Structure & Function of DNA | Paper lectures
Electronic screen
Video lectures via
electronic classes | Daily,
semester and
final exams | | 10 th | 2 | CsCl (Cesium Chloride) Centrifugation of DNA: -Solid-phase Nucleic Acid Extraction: - oligo(dT) affinity chromatography to isolate mRNA: | Nucleic acid purification | Paper lectures
Electronic screen
Video lectures via
electronic classes | Daily,
semester and
final exams | | 11 th | 2 | Comet assay
technique,
Principle action, | DNA damage
detection | Paper lectures Electronic screen Video lectures via electronic classes | Daily,
semester and
final exams | | | | Potential | | |
| | | |------------------|------------------------------|---|---|---|--|--|--| | | | applications | | | | | | | 12 th | 2 | applications | Seasonal exam | | | | | | 1,2 | 4 | I. Blotting | Scasonar cami | | | | | | 13 th | 2 | II-PCR (polymerase chain reaction) -Synthesis PCR cycle is composed of three steps: | Nucleic Acids
Detection Techniques | Paper lectures
Electronic screen
Video lectures via
electronic classes | Daily,
semester and
final exams | | | | 14 th | 2 | Types of DNA microarrays, Principles of DNA Microarray experiments | -Microarray
technique: | Paper lectures
Electronic screen
Video lectures via
electronic classes | Daily,
semester and
final exams | | | | 15 th | 2 | Methods of DNA exchanged, - Electroporation Works | DNA Exchanged,
Electroporation
technique | Paper lectures
Electronic screen
Video lectures via
electronic classes | Daily,
semester and
final exams | | | | | | | | | | | | | Cours | se Str | ucture: Practic | al | | | | | | | Course Structure. I ractical | | | | | | | | | | | | | | | | | Week | Hours | Unit or subject name | Required Learning
Outcomes | Learning method | Evaluation
method | | | | Week 1st | Hours 2 | | _ | Paper lectures Electronic screen Video lectures via electronic classes | | | | | | | subject name Extraction | Outcomes Protein purification | Paper lectures
Electronic screen
Video lectures via | Daily, semester and | | | | 1 st | 2 | Extraction Techniques Techniques by | Outcomes Protein purification Techniques Precipitation of | Paper lectures Electronic screen Video lectures via electronic classes Paper lectures Electronic screen Video lectures via | Daily, semester and final exams Daily, semester and | | | | 5 th | 2 | DNA
Extraction
Techniques | DNA Structure | Paper lectures Electronic screen Video lectures via electronic classes | Daily,
semester and
final exams | |------------------|---|---|---|---|---------------------------------------| | 6 th | 2 | Techniques | Polymerase Chain
Reaction | Paper lectures
Electronic screen
Video lectures via
electronic classes | Daily,
semester and
final exams | | 7 th | 2 | PCR-
Techniques | DNA and Protein
sequence online
databases | Paper lectures
Electronic screen
Video lectures via
electronic classes | Daily,
semester and
final exams | | 8 th | 2 | Online
databases | Southern Blot | Paper lectures
Electronic screen
Video lectures via
electronic classes | Daily,
semester and
final exams | | 9th | 2 | Techniques | Electroporation
Technique | Paper lectures
Electronic screen
Video lectures via
electronic classes | Daily,
semester and
final exams | | 10 th | 2 | Techniques | Comet assay | Paper lectures
Electronic screen
Video lectures via
electronic classes | Daily,
semester and
final exams | | 11 th | 2 | Techniques of Comet assay(preparatio n of buffers and slid(| Saturation table | Paper lectures
Electronic screen
Video lectures via
electronic classes | Daily,
semester and
final exams | | 12 th | 2 | Saturation table application, | Saturation table | Paper lectures
Electronic screen
Video lectures via
electronic classes | Daily,
semester and
final exams | | 13 th | 2 | Preparing a Purification Table application | Preparing a
Purification Table | Paper lectures
Electronic screen
Video lectures via
electronic classes | Daily,
semester and
final exams | | 14 th | 2 | online | Primer design | Paper lectures
Electronic screen
Video lectures via
electronic classes | Daily,
semester and
final exams | | 15 th | 2 | | Exam | | | | 11. Course Evaluation | | | | | |---|---|--|--|--| | Overall score out of 100 | | | | | | | ng: 25 for theoretical + 15 for practical) | | | | | (End-of-semester exam score | = 60, including 40 for theory $+ 20$ for practical) | | | | | 12. Learning and Teaching | g Resources | | | | | Required textbo | - Book of microbial biotechnology / Prof. Dr. Z | | | | | (curricular books, if any) | Mahmoud Nasser Al-Khafaji - Publication year 2008 | | | | | Main references (sources) | - Palmer P L Bonner Enzymes 2nd | | | | | | Biochemistry, Biotechnology, Clinical | | | | | | Chemistry 2007. | | | | | | Wilson and walkers principles and techniques | | | | | of biochemistry and molecular | | | | | | biology,8th,2018 | | | | | | Recommended books and | - Robert A. Copeland ENZYMESA Prac | | | | | references (scientific | references (scientific Introduction to Structure, Mechanism, and Data Ana | | | | | journals, reports) SECOND EDITION A JOHN WILEY & SONS, | | | | | | PUBLICATION,2000 | | | | | | Electronic Referent https://drive.google.com/file/d/101HqrT0NeZ9xBCfQ | | | | | | Websites | 5oLjWASOahWJDu69/view?usp=drivesdk | | | | # Pathogenic bacteria | 1. Course Name: | |---| | Pathogenic bacteria | | 2. Course Code: | | BIOT305 | | 3. Semester / Year: | | 2 nd semester / 2024-2025 | | 4. Description Preparation Date: | | 1-10-2024 | | 5. Available Attendance Forms: | | Weekly attendance | | 6. Number of Credit Hours (Total) / Number of Units (Total) | | 2 Theoretical hours/week, one section * 15 weeks = 30 hours | | 4 Practical hours/week per section * 15 weeks = 60 hours | | Total number of hours per section = 90 hours | | Number of units = 3 units (theoretical 2 + practical 1) | | 7. Course administrator's name (mention all, if more than one name) | | Name: Prof. Dr. Suhad Saad Mahmood | | Email: suhad.mahmood@sc.uobaghdad.edu.iq | | 8. Course Objectives | This course aims to provide a course of study in the physiology of mammals, especially humans, based on Knowledge of basic physiological principles of living organisms To develop more practical biological skills in the field of organismal physiology. To prepare students for a number of natural sciences courses in physiology, development and neuroscience, as well Pharmacology, pathology and zoology, among others. #### 9. Teaching and Learning Strategies - 1. Clarification and explanation of the study materials by the academic staff through the whiteboard or using PowerPoint. - 2. Providing students with homework. - 3. Preparing reports related to academic vocabulary. - 4. Visit websites to obtain additional knowledge of academic subjects. - 5. Brainstorming during lectures. | 10. (| 10. Course Structure: Theory | | | | | | |-----------------|------------------------------|---|---|---|---------------------------------------|--| | Week | Hours | Unit or subject name | Required Learning Outcomes | Learning method | Evaluation
method | | | 1 st | 2 | Introduction to
Bacteriology | Bacteria Compared with, Other Microorganisms . Structure of Bacterial Cell,. Growth, Classification of Medically Important Bacteria | Paper lectures
Electronic screen
Video lectures via
electronic classes | Daily,
semester and
final exams | | | 2 nd | 2 | Bacterial
Pathogenesis
and Host
Interactions | General features, Pathogenesis, Clinical significance, Laboratory identification | Paper lectures
Electronic screen
Video lectures via
electronic classes | Daily,
semester and
final exams | | | 3 rd | 2 | Normal flora | General features, Pathogenesis, Clinical significance, Laboratory identification | Paper lectures
Electronic screen
Video lectures via
electronic classes | Daily,
semester and
final exams | | | 4 th | 2 | Gram positive
bacteria-
Staphylococci | General features, Pathogenesis, Clinical significance, Laboratory identification | Paper lectures
Electronic screen
Video lectures via
electronic classes | Daily,
semester and
final exams | | | 5 th | 2 | Streptococci | General features, Pathogenesis, Clinical significance, Laboratory identification | Paper lectures
Electronic screen
Video lectures via
electronic classes | Daily,
semester and
final exams | | | 6 th | 2 | | Seasonal Exam | | | | | | |------------------|-----------------------------|----------------------------|---|---|---------------------------------------|--|--|--| | 7 th | 2 | Gram negative rod | General features, Pathogenesis, Clinical significance, Laboratory identification | Paper lectures
Electronic screen
Video lectures via
electronic classes | Daily,
semester and
final exams | | | | | 8 th | 2 | Escherichia coli | General features, Pathogenesis, Clinical significance, Laboratory identification | Paper lectures
Electronic screen
Video lectures via
electronic classes | Daily,
semester and
final exams | | | | | 9 th | 2 | bacillus species | General features, Pathogenesis, Clinical significance, Laboratory identification | Paper lectures
Electronic screen
Video lectures via
electronic classes | Daily,
semester and
final exams | |
 | | 10 th | 2 | Neisseria | General features, Pathogenesis, Clinical significance, Laboratory identification | Paper lectures
Electronic screen
Video lectures via
electronic classes | Daily,
semester and
final exams | | | | | 11 th | 2 | Salmonella
and shigella | General features, Pathogenesis, Clinical significance, Laboratory identification | Paper lectures
Electronic screen
Video lectures via
electronic classes | Daily,
semester and
final exams | | | | | 12 th | 2 | | Seasonal exam | | | | | | | 13 th | 2 | Haemophilus
influenzae, | General features, Pathogenesis, Clinical significance, Laboratory identification, | Paper lectures
Electronic screen
Video lectures via
electronic classes | Daily,
semester and
final exams | | | | | 14 th | 2 | Pseudomonas
spp. | General features, Pathogenesis, Clinical significance, Laboratory identification | Paper lectures
Electronic screen
Video lectures via
electronic classes | Daily,
semester and
final exams | | | | | 15 th | 2 | Un typical
bacteria | General features, Pathogenesis, Clinical significance, Laboratory identification | Paper lectures
Electronic screen
Video lectures via
electronic classes | Daily,
semester and
final exams | | | | | Cours | Course Structure: Practical | | | | | | | | | Cours | CBII | ucture, i racile | | | | | | | | Week | Hours | Unit or subject name | Required Learning
Outcomes | Learning method | Evaluation
method | | | | | 1 st | 2 | Introduction in practical bacteriology | practical bacteriology | Paper lectures
Electronic screen
Video lectures via
electronic classes | Daily,
semester and
final exams | |------------------|---|---|---|---|---------------------------------------| | 2 nd | 2 | Biosafety in
biological
laborites | Biosafety principles | Paper lectures
Electronic screen
Video lectures via
electronic classes | Daily,
semester and
final exams | | 3 rd | 2 | Staphylococci | General characteristics laboratory identification | Paper lectures
Electronic screen
Video lectures via
electronic classes | Daily,
semester and
final exams | | 4 th | 2 | Streptococci | General characteristics
laboratory
identification | Paper lectures
Electronic screen
Video lectures via
electronic classes | Daily,
semester and
final exams | | 5 th | 2 | Gram negative
rod | General characteristics
laboratory
identification | Paper lectures
Electronic screen
Video lectures via
electronic classes | Daily,
semester and
final exams | | 6 th | 2 | Exame | | Paper lectures
Electronic screen
Video lectures via
electronic classes | Daily,
semester and
final exams | | 7 th | 2 | Neisseria | General characteristics laboratory identification | Paper lectures
Electronic screen
Video lectures via
electronic classes | Daily,
semester and
final exams | | 8 th | 2 | Escherichia coli | General characteristics laboratory identification | Paper lectures
Electronic screen
Video lectures via
electronic classes | Daily,
semester and
final exams | | 9th | 2 | SALMONELL
A and
SHIGELLA | General characteristics laboratory identification | Paper lectures
Electronic screen
Video lectures via
electronic classes | Daily,
semester and
final exams | | 10 th | 2 | CLOSTRIDIA | General characteristics laboratory identification | Paper lectures Electronic screen Video lectures via electronic classes | Daily,
semester and
final exams | | 11 th | 2 | Bacteroides | General characteristics laboratory identification | Paper lectures
Electronic screen
Video lectures via
electronic classes | Daily,
semester and
final exams | | |--|--|-------------------------------------|--|---|---------------------------------------|--| | 12 th | 2 | Review and
rendering all
labs | All identifications
tests | Paper lectures Electronic screen Video lectures via electronic classes | Daily,
semester and
final exams | | | 13 th | 2 | Exam | | | | | | 14 th | 2 | Mycobacterium | General
characteristics
laboratory
identification | Paper lectures Electronic screen Video lectures via electronic classes | Daily,
semester and
final exams | | | 15 th | 2 | Spirochetes | General characteristics
laboratory
identification | Paper lectures Electronic screen Video lectures via electronic classes | Daily,
semester and
final exams | | | 11 (| 7 | - F - 1 - 4° | | | | | | | | e Evaluation | | | | | | (Seme
(End-o | Overall score out of 100 (Semester grade = 40, including: 25 for theoretical + 15 for practical) (End-of-semester exam score = 60, including 40 for theory + 20 for practical) | | | | | | | | | ing and Teachi | | | | | | Requir | | , | ırricı | | | | | books, if any) Main references (sources) | | | | | | | | | Recommended books and | | | | | | | referer | ices | (scientific journ | nals, | | | | | reports | s) | | | | | | # **Fermentation technology** **Electronic References, Websites** | 1. Course Name: | | |------------------------------------|--| | Fermentation technology | | | 2. Course Code: | | | BIOT320 | | | 3. Semester / Year: | | | 1st semester-3rd class / 2024-2025 | | | 4. Description Preparation Date: | | | 1-10-2024 | | | 5. Available Attendance Forms: | | #### Weekly attendance #### 6. Number of Credit Hours (Total) / Number of Units (Total) 2 Theoretical hours/week, one section * 15 weeks = 30 hours 4 Practical hours/week per section * 15 weeks = 60 hours Total number of hours per section = 90 hours Number of units = 3 units (theoretical 2 +practical 1) #### 7. Course administrator's name (mention all, if more than one name) Name: Prof. Dr. Khalid Jaber Kadhum Email: Khalid.kadhum@sc.uobaghdad.edu.iq #### 8. Course Objectives - 1. Enabling students to gain knowledge and understanding the definition and scope of fermentation technology. - 2. Students will learn the upstream processing (USP) and downstream processing (DSP). #### 9. Teaching and Learning Strategies - 1. Providing students with the basics and additional topics related to the outputs of thinking and analysis of biotechnologies - 2. Forming discussion groups during lectures to discuss topics in biotechnology that require thinking and analysis. - 3. Asking students a set of thinking questions during lectures such as what, how, wh and why for specific topics. - 4. Giving student's homework that requires self-explanations in causal ways.. #### 10. Course Structure: Theory | Week | Hours | Unit or subject name | Required Learning Outcomes | Learning method | Evaluation
method | | |-----------------|-------|--|----------------------------|---|---------------------------------------|--| | 1 st | 2 | An introduction
to fermentation
technology | An introduction | Paper lectures
Electronic screen
Video lectures via
electronic classes | Daily,
semester and
final exams | | | 2 nd | 2 | Upstream
Processing | Upstream Processing | Paper lectures
Electronic screen
Video lectures via
electronic classes | Daily,
semester and
final exams | | | 3rd | 2 | Industrial
strains. | Industrial strains. | Paper lectures
Electronic screen
Video lectures via
electronic classes | Daily,
semester and
final exams | | | 4 th | 2 | Media for industrial fermentation. | Media and substrate | Paper lectures
Electronic screen
Video lectures via
electronic classes | Daily,
semester and
final exams | |------------------|---|---|---|---|---------------------------------------| | 5 th | 2 | Culture
systems: Batch
culture. | Culture systems | Paper lectures Electronic screen Video lectures via electronic classes | Daily,
semester and
final exams | | 6 th | 2 | Fed batch culture. | Culture systems | | | | 7 th | 2 | Continuous culture. | Culture systems | Paper lectures
Electronic screen
Video lectures via
electronic classes | Daily,
semester and
final exams | | 8 th | 2 | Mid Exam | Mid Exam | Paper lectures
Electronic screen
Video lectures via
electronic classes | Daily,
semester and
final exams | | 9th | 2 | Solid-state fermentation. | Solid-state
fermentation. | Paper lectures
Electronic screen
Video lectures via
electronic classes | Daily,
semester and
final exams | | 10 th | 2 | Fermenters:
definition and
types of
fermenters. | Fermenters: definition and types of fermenters. | Paper lectures Electronic screen Video lectures via electronic classes | Daily,
semester and
final exams | | 11 th | 2 | Fermenter design and construction. | Fermenter | Paper lectures
Electronic screen
Video lectures via
electronic classes | Daily,
semester and
final exams | | 12 th | 2 | Fermenter control and monitoring, | Fermenter | | | | 13 th | 2 | Sterilization of
the fermenter:
The
achievement
and
maintenance of
aseptic
conditions. | Fermentor | Paper lectures
Electronic screen
Video lectures via
electronic classes |
Daily,
semester and
final exams | | 14 th | 2 | Downstream processing | Downstream processing | Paper lectures
Electronic screen
Video lectures via
electronic classes | Daily,
semester and
final exams | |------------------|--------|--|--|---|---------------------------------------| | 15 th | 2 | The Recovery
and Purification
of Fermentation
Products | The Recovery and Purification of Fermentation Products | Paper lectures
Electronic screen
Video lectures via
electronic classes | Daily,
semester and
final exams | | Cours | se Str | ucture: Practic | al | | | | Week | Hours | Unit or subject name | Required Learning Outcomes | Learning method | Evaluation
method | | 1 st | 2 | Production of ethanol by yeast. | Microbial
metabolites | Paper lectures
Electronic screen
Video lectures via
electronic classes | Daily,
semester and
final exams | | 2 nd | 2 | Isolation of Industrial Microorganisms from Soil and their Potential to Produce Antibiotics. | Isolation of
Industrial
Microorganisms | Paper lectures
Electronic screen
Video lectures via
electronic classes | Daily,
semester and
final exams | | 3 rd | 2 | The rate of fermentation varies with the type of sugar being metabolized. | Fermentation and carbon source | Paper lectures
Electronic screen
Video lectures via
electronic classes | Daily,
semester and
final exams | | 4 th | 2 | Fermentation of lactose by lactic acid producing bacteria: Yoghurt | Fermentation of lactose | Paper lectures
Electronic screen
Video lectures via
electronic classes | Daily,
semester and
final exams | | 5 th | 2 | Exam | Exam | Paper lectures
Electronic screen
Video lectures via
electronic classes | Daily,
semester and
final exams | | 6 th | 2 | How fermentation varies with changes in temperature. | Fermentation and temperature | Paper lectures
Electronic screen
Video lectures via
electronic classes | Daily,
semester and
final exams | | 7 th | 2 | Yeast
fermentation
with and
without aeration | Yeast fermentation | Paper lectures
Electronic screen
Video lectures via
electronic classes | Daily,
semester and
final exams | |------------------|-----------------------|---|------------------------------|---|---------------------------------------| | 8 th | 2 | Anaerobic fermentation | Anaerobic fermentation | Paper lectures
Electronic screen
Video lectures via
electronic classes | Daily,
semester and
final exams | | 9 th | 2 | Production of protease by Aspergillus niger in liquid culture | Submerged
Fermentation | Paper lectures
Electronic screen
Video lectures via
electronic classes | Daily,
semester and
final exams | | 10 th | 2 | Production of protease by Aspergillus niger in solid state fermentation | Solid- State
Fermentation | | | | 11 th | 2 | Bioreactor:
design and
construction | Bioreactor | Paper lectures
Electronic screen
Video lectures via
electronic classes | Daily,
semester and
final exams | | 12 th | 2 | How to sterilize bioreactor | Bioreactor | | | | 13 th | 2 | Downstream processing: how to extract and purified a microbial product from fermentation culture. | Downstream processing | Paper lectures
Electronic screen
Video lectures via
electronic classes | Daily,
semester and
final exams | | 14 th | 2 | Downstream processing: Purification of enzymes from liquid culture | Downstream processing | Paper lectures
Electronic screen
Video lectures via
electronic classes | Daily,
semester and
final exams | | 15 th | 2 | Downstream processing: Purification of enzymes from solid state fermentation | Downstream processing | | | | 11. (| 11. Course Evaluation | | | | | | Overall score out of 100 | | | | |---|--|--|--| | | | | | | | ng: 25 for theoretical + 15 for practical) | | | | (End-of-semester exam score | = 60, including 40 for theory + 20 for practical) | | | | 12. Learning and Teaching | g Resources | | | | Required textbo | - Industreial biotechnology for Dr.Nedam Al-Hydari. | | | | (curricular books, if any) | | | | | Main references (sources) | Manual of Industrial Microbiology and Biotechnology (Third edition 2010) By Richard H. Baltz et. al Principles of fermentation technology (second edition 2003) By Stanbury PF; Whitaker; Hall SJ Bioprocess Engineering: Basic concepts by Fikret Kargi | | | | Recommended books and references (scientific journals, reports) Electronic Reference | | | | | Websites | WWW.Fermentation technology.org | | | # Mycology | 1. Course Name: | |---| | Mycology | | 2. Course Code: | | BIOL330 | | 3. Semester / Year: | | 2 nd semester / 2024-2025 | | 4. Description Preparation Date: | | 1-10-2024 | | 5. Available Attendance Forms: | | Weekly attendance | | 6. Number of Credit Hours (Total) / Number of Units (Total) | | 2 Theoretical hours/week, one section * 15 weeks = 30 hours | | 4 Practical hours/week per section * 15 weeks = 60 hours | | Total number of hours per section = 90 hours | | Number of units = 3 units (theoretical 2 + practical 1) | | 7. Course administrator's name (mention all, if more than one name) | Name: Prof. Dr. Abdulkareem Jasim Hashim Email: abdulkareem.hashim@sc.uobaghdad.edu.iq # 8. Course Objectives 1. This course deals with the basic concept of mycology. 2. To understand the role of mycology in biotechnology field. # 9. Teaching and Learning Strategies The main strategy that will be adopted in delivering this module is to encourage students' participation in the collection of different samples, media preparation. Isolation and primitive identification according to the acquired skills from the theoretical and practical information through lectures and Lab. | | H | Unit or | Required Learning | Learning method | Evaluation | |-----------------|-------|--|--|-----------------------------|---------------------------------------| | Week | Hours | subject name | Outcomes | | method | | 1 st | 2 | Introduction | Introduction, Classification systems of fungi, Morphology of fungi, Sexual and asexual spores | Paper lectures
Data show | Daily,
semester and
final exams | | 2 nd | 2 | Important of
fungi and
Reprpduction | Important of fungi, Living mode, Elements and environmental requirements for fungi cultivation, Sexual and asexual reproduction, sexual compatibility. | Paper lectures
Data show | Daily,
semester and
final exams | | 3 rd | 2 | Classification of fungi. Division 1: Myxomycota, | Classification of fungi, Division 1: Myxomycota, general characteristics, the classes involved in this division. Myxomycetes and Plasmodiophoromycetes (One example for each class). | Paper lectures
Data show | Daily,
semester and
final exams | | 4 th | 2 | Division 2:
Eumycota | General characteristics, Class 1,Chytridiomycetes and its classification, Order1: Chytridiales, order 2: Blastocladiales , order 3: Monoblepharidales. Class 2, Hyphochytridiomyct es. | Paper lectures
Data show | Daily,
semester and
final exams | |-----------------|---|-------------------------|---|-----------------------------|---------------------------------------| | 5 th | 2 | Division 2:
Eumycota | Class 3: Oomyctes, general characteristics, and the classification of this class. Order 1: Saprolegniales Order 2: Peronosporales and the families involved in this order: Family 1:- Pythiaceae, Family2:- Peronosporaceae Family 3:- Albuginaceae. | Paper lectures
Data show | Daily,
semester and
final exams | | 6 th | 2 | Division 2:
Eumycota | Class 4: Zygomycetes, general characteristics, Orders involved in this class. Order 1: Mucorales Order 2: Entomophthorales Order 3: Zoopagales . The role of some strains in production of biomaterials | | | | 7 th | 2 | | Mid-term Exam. | | | | 8 th | 2 | Division 2:
Eumycota | Class 5: Ascomycetes, general characteristics, Subclasses involved in this class. Subclass 1: Hemiascomycetidae which classified into Order 1: Endomycetales contains two families. Family 1:- Endomycetaceae and Family 2: Saccharomycetacea e. Order 2: Taphrinales. The role of some strains in production of biomaterials, food manufacturing, plant pathogens, Human pathogens. | Paper lectures
Data show | Daily,
semester and
final exams | |-----------------|---|-------------------------
--|-----------------------------|---------------------------------------| | 9th. | | Division 2:
Eumycota | Class 5: Ascomycetes, Subclass 2: Euascomycetidae, general characteristics. Classification of this subclass which involves three Series: Series 1: Plectomycetes Genus 1: Aspergillus and Genus 2: Penicillium their | | | | | | | role in biotechnology. The role of some strains in production of biomaterials, food manufacturing, plant pathogens, Human pathogens. Series 2: Pyrenomycetes: which involve 5 orders: Order 1: Erysiphales, Order 2: Chaetomyales, Order 3: Claviceptales, Order 4: Shpaeriales and Order 5: Hypocreales | | | |------------------|---|-------------------------|---|-----------------------------|---------------------------------------| | 10 th | 2 | Division 2:
Eumycota | Class 5: Ascomycetes, Series 3: Discomycetes: general characteristics, This Series classified into two groups: Group 1: Hypogean: which presence under the surface of soil. Group 2: Epigean Subclass 3: Loculoascomyce tidae | Paper lectures
Data show | Daily,
semester and
final exams | | 11 th | 2 | Division 2:
Eumycota | Class 6: Basidiomycetes, general characteristics, Subclasses involved in this class. Subclass 1: Heterobasidiom ycetidae, general characteristics, | Paper lectures
Data show | Daily,
semester and
final exams | | | | | This subclass | | | |------------------|---|--------------|-----------------------------------|----------------|--------------------------| | | | | involves two | | | | | | | orders: | | | | | | | Order 1: Uredinales | | | | | | | (Rust fungi) | | | | | | | Order 2: | | | | | | | Ustilaginales (Smut | | | | | | | fungi) These two orders | | | | | | | contain very | | | | | | | economically | | | | | | | • | | | | | | | important strains. | | | | | | | Class 6: | | | | | | | Basidiomycetes, Subclasses 2: | | | | | | | Holobasidiomycetid | | | | | | | • | | | | | | | ae, general | | | | 12 th | 2 | Division 2: | characteristics. The role of some | | | | | | Eumycota | | | | | | | | strains in production | | | | | | | of enzymes such | | | | | | | laccase, peroxidase, | | | | | | | cellulose, Edible and | | | | 100 | _ | | poising mushroom. | | | | 13 th | 2 | | Exam. | | | | | | | Class 7: | | | | | | | Deutromycetes, | | | | | | | general characteristics, | | | | | | | Orders involved in | | | | | | | this class. | | Daily, | | 14 th | 2 | Division 2: | Order 1: | Paper lectures | semester and | | 17 | _ | Eumycota | Moniliales, | Data show | final exams | | | | | Order 2: | | | | | | | Sphaeropsidales, | | | | | | | Order 3: | | | | | | | Melanconiales And Order 4: | | | | | | | Mycelia sterile | | | | | | | Medical mycology | | | | | | | which involve: | | D. II | | | | Medical | classification of this | | Daily, | | 15 th | 2 | mycology and | fundi according to | Paper lectures | semester and final exams | | | | Mycotoxins | the site of infection. | Data show | mai cams | | | | J = = ====== | Mycotoxins which | | | | | | | involve the main | | | | 1 | 1 | | mivolve the main | | | | | | | groups of | | | | |-----------------|-----------------------------|----------------------------|---|--|---------------------------------------|--| | | | | mycotoxins. | | | | | Cours | Course Structure: Practical | | | | | | | Week | Hours | Unit or
subject
name | Required Learning
Outcomes | Learning method | Evaluation
method | | | 1 st | 2 | Mycology | Introduction | Paper lectures
Algal slides by
Data show | Daily,
semester and
final exams | | | 2 nd | 2 | Mycology | Isolation of fungi | Paper lectures
Algal slides by
Data show | Daily,
semester and
final exams | | | 3 rd | 2 | Mycology | Fungal classification (Division: Myxomycota) | Paper lectures
Algal slides by
Data show | Daily,
semester and
final exams | | | 4 th | 2 | Mycology | Division: Eumycota Subdivision: Mastigomycotina Class: Chytridiomycetes | Paper lectures
Algal slides by
Data show | Daily,
semester and
final exams | | | 5 th | 2 | Mycology | Division: Eumycota
Subdivision:
Mastigomycotina Class:
Oomycetes | Paper lectures
Algal slides by
Data show | Daily,
semester and
final exams | | | 6 th | 2 | Mycology | Division: Eumycota Subdivision: Mastigomycotina Class: Zygomycetes | Paper lectures
Algal slides by
Data show | Daily,
semester and
final exams | | | 7 th | 2 | Mycology | Exam. | | | | | 8 th | 2 | Mycology | Subdivision: Ascomycotina Class: Hemiascomycetes (Protoascomycetes) | Paper lectures
Algal slides by
Data show | Daily,
semester and
final exams | | | 9th | 2 | Mycology | Subdivision: Ascomycotina Class: Ascomycetes Subclass: Plectomycetidae | Paper lectures
Algal slides by
Data show | Daily,
semester and
final exams | | | 10 th | 2 | Mycology | Subdivision: Ascomycotina Class: Ascomycetes Subclass: Loculloascomycetidae | Paper lectures Algal slides by Data show | | |------------------|---|----------|---|--|---------------------------------------| | 11 th | 2 | Mycology | | Paper lectures Algal slides by Data show | Daily,
semester and
final exams | | 12 th | 2 | Mycology | Subdivision: Ascomycotina Class: Ascomycetes Subclass: Discomycetida | Paper lectures Algal slides by Data show | | | 13 th | 2 | Mycology | Exam. | | | | 14 th | 2 | Mycology | Samples collection and fungi isolation, purification and identification | Practical | | | 15 th | 2 | - El4 | Samples collection and fungi isolation, purification and identification | Practical | | ## 11. Course Evaluation Overall score out of 100 (Semester grade = 40, including: 25 for theoretical + 15 for practical) (End-of-semester exam score = 60, including 40 for theory + 20 for practical) # 12. Learning and Teaching Resources | Required textbo | Introductory mycology by Alexopoulos, C.J and C.W.Mi | |----------------------------|---| | (curricular books, if any) | Third edition. | | Main references (sources) | Introduction to fungi by John Webster and Roland W.S.Weber 2007. Cambridge. | | Recommended books and | Introductory mycology by Alexopoulos, C.J and C.W.Mi | | references (scientific | Third edition. | | journals, reports) | | | Electronic Reference | https://en.wikipedia.org/wiki/Mycology | | Websites | | # **Microbial genetics** #### 1. Course Name: #### **Microbial Genetics** #### 2. Course Code: BIOT345 #### 3. Semester / Year: ^{2nd} semester / 2024-2025 ## 4. Description Preparation Date: #### 1-10-2024 #### 5. Available Attendance Forms: # Weekly attendance ## 6. Number of Credit Hours (Total) / Number of Units (Total) - 2 Theoretical hours/week, one section * 15 weeks = 30 hours - 4 Practical hours/week per section * 15 weeks = 60 hours Total number of hours per section = 90 hours Number of units = 3 units (theoretical 2 +practical 1) ### 7. Course administrator's name (mention all, if more than one name) Name: Prof. Dr. Nuha Joseph Najeeb Kandala Email:nuha.najeeb@sc.uobaghdad.edu.iq #### 8. Course Objectives The course aims to introduce students to one of the branches of genetics, which is the Microbial Genetics, and to study all the factors that participate in revealing the facts about the genetics of microorganisms. It includes a historical overview of the genetics of microorganisms, the use of bacteria and viruses in genetic studies, the replication of the nuclear material of bacteria, and bacteriophages (prokaryotes), the genetic code, transcription and translation, mutations and their types and everything related to them, the mechanism of gene transfer (conjugation, transformation and connection), means of gene transfer (plasmids, phages and vector elements), re-association and repair of the resulting defect. This course aims to develop students' competence providing them with the basic skills related to genetics and the more precise ones related to microbiology and biotechnology and their applications in all fields to make them able to fill the work need and keep pace with scientific development by employing them in research centers. ## 9. Teaching and Learning Strategies - 1. Clarification and explanation of the study materials by the academic staff through the whiteboard or using PowerPoint. - 2. Providing students with homework. - 3. Preparing reports related to academic vocabulary. - 4. Visit websites to obtain additional knowledge of academic subjects. - 5. Brainstorming during lectures. | Week | Hours | Unit or subject name | Required Learning Outcomes | Learning method | Evaluation method | |-----------------|-------|--|---|---|---------------------------------------| | k | rs | | | | | | 1 st | 2 |
Introduction to
Genetics of
Microorganisms | A-Advantages for using bacteria and viruses for genetics study B-Classification of Organisms C-The Bacterial Genome D-Bacteria Were Used for Fundamental Studies of Cell Function E-Viruses and Bacterial Viruses | Paper lectures
Electronic screen
Video lectures via
electronic classes | Daily,
semester and
final exams | | 2 nd | 2 | Replication in bacteria and viruses | A-Types and principle of replication. B-The mechanism of replication . C-The role of enzymes in replication. C-Replication in phage and archaebacteria D-Repair Systems | Paper lectures
Electronic screen
Video lectures via
electronic classes | Daily,
semester and
final exams | | 3rd | 2 | Gene expression:
Transcription in
Bacteria | A-RNA Molecules B-The Structure of RNA C-Transcription: Synthesizing RNA from a DNA Template D-The Substrate for Transcription E-The Process of Bacterial Transcription | Paper lectures
Electronic screen
Video lectures via
electronic classes | Daily,
semester and
final exams | | 4 th | 2 | Translation in
Bacteria | A- Bacteria- Synthesizing proteins (amino acids) from RNA B-The Substrate for Translation C-The Process of Bacterial Translation | Paper lectures
Electronic screen
Video lectures via
electronic classes | Daily,
semester and
final exams | |-----------------|---|----------------------------------|--|---|---------------------------------------| | 5 th | 2 | Exam | exam | | | | 6 th | 2 | Mutations | A-Definition of mutations B-Classification of mutation. C-Nomenclature of mutatin D-Mechanisms of mutations. E-The influence of chemicals and phiscal agents among mutations | Paper lectures
Electronic screen
Video lectures via
electronic classes | Daily,
semester and
final exams | | 7 th | 2 | Inheritance in
bacteria | A-Luria and Delbruck experiment. B-The Newcombeexperime nt . C-The Lederbergs experiment. D-Mutation rates E-Calculation mutation rates. | Paper lectures
Electronic screen
Video lectures via
electronic classes | Daily,
semester and
final exams | | 8 th | 2 | Mobile elements:
The Plasmids | A-The Characteristic features of Plasmid B-Classified plasmids according to the function . C-Plasmids replication and control | Paper lectures
Electronic screen
Video lectures via
electronic classes | Daily,
semester and
final exams | | 9 th | 2 | Movable Genes | The Nature of Transposable Elements General Characteristics of | Paper lectures
Electronic screen
Video lectures via
electronic classes | Daily,
semester and
final exams | | Week | A A COULD | Hours | Unit or subject name | Required Learning
Outcomes | Learning method | Evaluation
method | |-----------------|-----------|--------------|------------------------------|---|---|---------------------------------------| | Cou | rse S | Struc | ture: Practical | | | | | 15 ^t | 2 | Final exam | | | | | | 14 ^t | 2 | Transduction | | Types of transduction Genrlized and specialized transduction C-phages and gene transfer,lytic and lysogenic cycles of bacteria. | Paper lectures
Electronic screen
Video lectures via
electronic classes | Daily,
semester and
final exams | | 13 ^t | 2 | T | ransformation | A-types of
transformation
B-Mechanisms of
transformation
C- the factors effect
of transformation
D-transformation in
plasmid | Paper lectures
Electronic screen
Video lectures via
electronic classes | Daily,
semester and
final exams | | 12 ^t | 2 | | ene Transfer:
Conjugation | A-Mechanism of conjucation B-Fertility plasmid C- Types of conjucation in gram positive and gram negative bacteria | | | | 11 ^t | 2 | Vira | al Genetics | ATypes of cycle in
Bacteriophages
B-Techniques for
the Study of
Bacteriophages | Paper lectures
Electronic screen
Video lectures via
electronic classes | Daily,
semester and
final exams | | 10 ^t | 2 | | Exam | Exam | | | | | | | | Transposable Elements Mechanisms of Transposition Transposable Elements in Bacteria | | | | 1 st | 2 | مقدمة عامة /
طرق انتقال
المواد الوراثية
بين البكتيريا | مقدمة ثعريفية عن وراثة
الاحياء المجهرية وطرق
انتقال المادة الوراثية فيما بينها | Paper lectures
Electronic screen
Video lectures via
electronic classes | Daily,
semester and
final exams | |-----------------|---|--|--|---|---------------------------------------| | 2 nd | 2 | جودة التجارب
المختبرية | مكونات التجربة
1. العينة وتهيئة العينة
2. الطريقة
3. استخدام سيطرة موجبة
وسيطرة سالبة
4.تحليل وعرض النتائج | Paper lectures
Electronic screen
Video lectures via
electronic classes | Daily,
semester and
final exams | | 3 rd | 2 | تهيئة العينات
البكتيرية | الاوساط الزعية لخلايا
بكتيرية سليمة
1. الاوساط الصلية والسائلة.
2. تهيئة الوساط الزرعية
3-فصل الحلايا البكتيرية | Paper lectures
Electronic screen
Video lectures via
electronic classes | Daily,
semester and
final exams | | 4 th | 2 | Exam | | | | | 5 th | 2 | در اسة انتقال
المادة الور اثية
بطريقة التحول
البكتيري | الفهم الكامل لطريقة
التحول البكتيري وكيفية
تهيئة الخلايا البكتيرية
اجراء تجربة عملية
توضح ظاهرة التحول | Paper lectures
Electronic screen
Video lectures via
electronic classes | Daily,
semester and
final exams | | 6 th | 2 | الاقتران البكتيري | در اسة انتقال المادة
الوراثية بطريقة الاقتران
البكتيري من خلال
اجراء تجربة عملية
توضح ظاهرة الاقتران. | Paper lectures
Electronic screen
Video lectures via
electronic classes | Daily,
semester and
final exams | | 7 th | 2 | Transduction | دراسة انتقال المادة الوراثية بطريقة الاصابة بالعاثياتالبكتيرية اجراء تجربة عملية توضح ظاهرة التوصيل | Paper lectures
Electronic screen
Video lectures via
electronic classes | Daily,
semester and
final exams | | 8 th | 2 | EXAM | EXAM | | | | 9 th | 2 | الطفرات في
البكتريا | الطفرات في البكتريا
2-انواع الطفرات
3- انواعالمطفرات /
الكيمياوية والفيزياوية.
4-المستوى الجزيئي في عزل
الطفرات
5-الطرق الجزيئية للكشف | Paper lectures
Electronic screen
Video lectures via
electronic classes | Daily,
semester and
final exams | | 10 ^t | 2 | الطفرات في
البكتريا
الجزء الثاني | الكشف عن الطفرات في
البكتريا
بااستخدامالمطفر اتالكيمي
ائيةا والفيزيائية في
الاوساط الصلبة والسائلة | | | | 11 ^t | 2 | الكشف عن
الطفر ات المقاومة
للمضادات
الحيوية في
البكتريا | استخدام احد طرق
الكشف عن الطفرات
المقاومة للمضادات
الحيوية . | Paper lectures
Electronic screen
Video lectures via
electronic classes | Daily,
semester and
final exams | |-----------------|---|---|--|---|---------------------------------------| | 12 ^t | 2 | استخلاص
البلاز میدات من
البکتریا | استخدام طرق مختلفة
الاستخلاص البلازميد
1- Alkaline
method
2- Boiling
method
3- Phenol –
chloroform
method
4- Using kit in
extraction | | | | 13 ^t | 2 | تقنية الترحيل
الكهربائي في
الكشف عن
البلازميدات | استخدام الترحيل
الكهربائي في الكشف
عن البلاز ميدات
المستخلصة بطرق
مختلفة | Paper lectures
Electronic screen
Video lectures via
electronic classes | Daily,
semester and
final exams | | 14 ^t | 2 | Polymerase
chain reaction | التعرف على مبدا 1
هذه التقنية تقنية تفاعل
البلمرة المتسلسل
2-خطوات التقنية
3- تطبيق عملي على
الكشف عن احد الجينات
في البكتريا | Paper lectures
Electronic screen
Video lectures via
electronic classes | Daily,
semester and
final exams | | 15 ^t | 2 | Final exam | Exam | | | | | ~ | | | | | # 11. Course Evaluation Overall score out of 100 (Semester grade = 40, including: 25 for theoretical + 15 for practical) (End-of-semester exam score = 60, including 40 for theory + 20 for practical) # 12. Learning and Teaching Resources | Required textbooks (curricu | -علم الاحياء المجهرية (ج1,ج2). | |-----------------------------|---| | books, if any) | د. وفاء جاسم رجب | | | 2-اساسيات ومبادى الوراثة . | | | أ.د. عبد الخالق مراد | | | 3-علم الوراثة ج١ تنظيم وتضاعف المادة الوراثية | | | د محمد علي الحاجي | | Main references (sources) | | 1-Molecular Genetics of Bacteria.4th EditionJeremy Recommended books and W. Dale and Simon F. Park ,2004. references (scientific 2-Genetics.Leland H.Hartwell. (2000) journals, reports...) 3-Color atlas of genetics Eberhad, Passarge. (2001). -Microbial Genetics. Keya Chaudhari, 2013 4-Genetics of Bacteria. Shrivastava, Sheela, 2013 5-Modern Microbial Genetics, Uldis N. Streips ,Ronald E. Yasbin. (2002). Second **Edition** 6-Fundamentals of Microbiology by Jeffrey Pommerville .(2014). 10th Edition المواقع العديدة التي تعني بـ وراثة احياء مجهرية ومن ضمنها المواقع الطبية **Electronic-References, Websi** واليوتيوب والبحوث العلمية
https://drive.google.com/file/d/1Ao2R1fWEy02I4ZmcB 4hpBJSmLt4s7jMG/viewhttps://www.snvdz.com/2019/ 08/geneticmolecular.html https://www.youtube.com/watch?v=tl u--Ufnkghttps://www.youtube.com/watch?v=URUJD5NE https://www.voutube.com/watch?v=2ctmJJmLzuU https://www.youtube.com/watch?v=XY0 KBa7y5Q https://www.neelwafurat.com/itempage.aspx?i # Food biotechnology | 1. Course Name: | |---| | Food microtechnology | | 2. Course Code: | | BIOT315 | | 3. Semester / Year: | | 2 nd semester / 2024-2025 | | 4. Description Preparation Date: | | 1-10-2024 | | 5. Available Attendance Forms: | | Weekly attendance | | 6. Number of Credit Hours (Total) / Number of Units (Total) | | 2 Theoretical hours/week, one section * 15 weeks = 30 hours | | 4 Practical hours/week per section * 15 weeks = 60 hours | | Total number of hours per section = 90 hours | | Number of units = 3 units (theoretical 2 + practical 1) | d=lbb127823-87950&search=books #### 7. Course administrator's name (mention all, if more than one name) Name: Prof. Dr. Hutaf Abd Almalik Ahmed Alsalim Email: hutaf.alsalim@sc.uobaghdad.edu.iq ## 8. Course Objectives This course aims to provide a course of study in the physiology of mammals, especially humans, based on Knowledge of basic physiological principles of living organisms To develop more practical biological skills in the field of organismal physiology. To prepare students for a number of natural sciences courses in physiology, development and neuroscience, as well Pharmacology, pathology and zoology, among others. # 9. Teaching and Learning Strategies - 1. Clarification and explanation of the study materials by the academic staff through the whiteboard or using PowerPoint. - 2. Providing students with homework. - 3. Preparing reports related to academic vocabulary. - 4. Visit websites to obtain additional knowledge of academic subjects. - 5. Brainstorming during lectures. | 10. (| . Course Structure: Theory | | | | | | |-----------------|----------------------------|--|--|---|---------------------------------------|--| | Week | Hours | Unit or
subject name | Required
Learning
Outcomes | Learning method | Evaluation
method | | | 1 st | 2 | -History and development of food microbiology -Characteristics of predominant microorganisms in food | -Development of
food microbiology
- Characteristics of
predominant
microorganisms in
food (mold, yeast,
viruses, bacteria)
-Important bacterial
genera | Paper lectures
Electronic screen
Video lectures via
electronic classes | Daily,
semester and
final exams | | | 2 nd | 2 | Sources of microorganisms in food | Sources of microorganisms in food: Predominant microorganisms in different sources (Plants, animals, air, soil, sewage, water, humans, food ingredients, equipment, miscellaneous) | Paper lectures
Electronic screen
Video lectures via
electronic classes | Daily,
semester and
final exams | | | 3 rd | 2 | Microbiological
standard of food | -Microbiological
standard of food
(Adulterated and
misbranded food and | Paper lectures
Electronic screen
Video lectures via
electronic classes | Daily,
semester and
final exams | | | | | Common | Bacteriological | | | |-----------------|---|-------------------|---|--------------------|--------------| | | | Microbial | standard of food) | | | | | | Spoilage of foods | Common M. and date | | | | | | | Common Microbial Spoilage of foods | | | | | | | (types of common | | | | | | | microbial spoilage) | | | | | | | Microbial growth | | | | | | | characteristics: | | | | | | | Natural of microbial | | | | | | | growth in food | | D - '1 | | | | Microbial | (Mixed Population, | Paper lectures | Daily, | | 4 th | 2 | growth | Sequence of Growth, | Electronic screen | semester and | | 7 | _ | characteristics | Growth in | Video lectures via | final exams | | | | characteristics | Succession, | electronic classes | | | | | | Symbiotic Growth, | | | | | | | Synergistic Growth, | | | | | | | and Antagonistic | | | | | | | Growth) | | | | | | | Factors influencing | | | | | | | microbial growth in | | | | | | | food: -Intrinsic factors or | | | | | | Factors | food environment | Paper lectures | Daily, | | 5 th | _ | influencing | (Nutrients, Growth | Electronic screen | semester and | | 3 | 2 | microbial growth | Factors and | Video lectures via | final exams | | | | in food | Inhibitors, Water | electronic classes | | | | | | Activity, pH, Redox | | | | | | | Potential) - External Factors | | | | | | | (Temperature) | | | | 6 th | 2 | Seasonal Exam | الامتحان الشهري الاول | | | | 0 | | Seasonal Exam | Microbial food | | | | | | | spoilage | | | | | | Microbial food | -Important factors in | | | | | | spoilage | microbial food | | | | | | -Important | spoilage | | Daily, | | | | factors in | (Significance of | Paper lectures | semester and | | 7 th | 2 | microbial food | microorganisms, and | Electronic screen | final exams | | | | spoilage. | (Significance of | Video lectures via | mai Camb | | | | -Spoilage of | foods) | electronic classes | | | | | Specific Food | -Spoilage of Specific | | | | | | Groups | Food Groups: Meat | | | | | | | (red meat, Poultry, | | | | | | | Fish) and eggs | | | | | | | -Spoilage of Specific | | | | | | Microbial food | Food Groups (Milk | | Daily, | | | | spoilage | and their products,
Vegetables, fruits and | Paper lectures | semester and | | 8 th | 2 | -Spoilage of | nuts, cereals and their | Electronic screen | | | | - | Specific Food | products, canned | Video lectures via | final exams | | | | Groups. | foods, soft drinks, | electronic classes | | | | | Стопры. | fruit juices and, | | | | | | | vegetable juices, | | | | | | Food Spoilage | mayonnaise, salad
dressings, and | | | | |-----------------------------|----|---|--|---|---------------------------------------|--| | | | by Microbial Enzymes | condiments, pickles) | | | | | | | | -Food Spoilage by
Microbial Enzymes | | | | | | | | (Intracellular and | | | | | | | | extracellular | | | | | | | | enzymes) -Important Facts in | | Daily, | | | 9 th | 2 | Microbial
foodborne
diseases | Foodborne DiseasesFoodborne Intoxications | Paper lectures Electronic screen Video lectures via electronic classes | semester and final exams | | | 10 th | 2 | Microbial
foodborne
diseases | -Foodborne InfectionsFoodborne Toxicoinfections. | Paper lectures
Electronic screen
Video lectures via
electronic classes | Daily,
semester and
final exams | | | 11 th | 2 | Microbial
foodborne
diseases | - Parasites - Indicators of Bacterial Pathogens. | Paper lectures
Electronic screen
Video lectures via
electronic classes | Daily,
semester and
final exams | | | 12 th | 2 | الامتحان الشهري
الثاني | Seasonal exam | | | | | 13 th | 2 | Control of microorganisms in food | -Control of access (Cleaning and Sanitation)Control by physical removalControl by Heat. | Paper lectures
Electronic screen
Video lectures via
electronic classes | Daily,
semester and
final exams | | | 14 th | 2 | Control of
microorganisms
in food | -Control by Low TemperatureControl by Reduced Aw. Control by Low pH and Organic Acids. | Paper lectures
Electronic screen
Video lectures via
electronic classes | Daily,
semester and
final exams | | | 15 th | 2 | Control of microorganisms in food | -Control by Modified Atmosphere (or Reducing O–R Potential)Control by Antimicrobial PreservativesControl by Irradiation. | Paper lectures
Electronic screen
Video lectures via
electronic classes | Daily,
semester and
final exams | | | C. | C4 | 4 D4* | | | | | | Course Structure: Practical | | | | | | | | Week | Hours | Unit or subject name | Required
Learning
Outcomes | Learning method | Evaluation
method | |-----------------|-------|---|--|---|---------------------------------------| | 1 st | 2 | Preparation of samples | How to prepare and examine samples of canned food: Receipt and storage (Size, handling, containers, transportation, Request for examination, Receipt and description at the laboratory) | Paper lectures
Electronic screen
Video lectures via
electronic classes | Daily,
semester and
final exams | | 2 nd | 2 | Methods for
Microbiological
Examination of
Foods
Direct Methods
Indirect Methods | Train students on how to benefit from the diversity of examination methods and the importance of each method (Microbiological Examination Methods, Microscopic examination, ATP photometry, Rapid Method). Indirect Methods: (Plate count, Culturing Technique, Pour plate) | Paper lectures
Electronic screen
Video lectures via
electronic classes | Daily,
semester and
final exams | | 3 rd | 2 | Microbiological
Examination of
Milk | How to detect milk contaminants
and the factors affecting and helping to cause contamination: Milk Examination, Screening the quality of milk, the microbiological tests of milk (Standard Plate Count, Coliform Count, The Breed count), Biochemical tests used to characterize bacteria. | Paper lectures
Electronic screen
Video lectures via
electronic classes | Daily,
semester and
final exams | | 4 th | 2 | Microbiological
Examination of
meat | How to detect meat
and the factors
affecting its approval | Paper lectures
Electronic screen
Video lectures via
electronic classes | Daily,
semester and
final exams | | 5 th | 2 | Microbiological
Examination of
poultry | How to detect poultry
and the factors
affecting its approval | Paper lectures
Electronic screen
Video lectures via
electronic classes | Daily,
semester and
final exams | | 6 th | 2 | Microbiological
Examination of
fish | How to detect fish
and the factors
affecting its
approval | Paper lectures
Electronic screen
Video lectures via
electronic classes | Daily,
semester and
final exams | |------------------|---|--|---|---|---------------------------------------| | 7 th | 2 | Microbiological
examination of
eggs | How to detect egg contaminants and the factors affecting them and helping them to become contaminated | Paper lectures
Electronic screen
Video lectures via
electronic classes | Daily,
semester and
final exams | | 8 th | 2 | Microbiological
examination of
Fruit | How to detect fruit contaminants and the influencing factors and help with their contamination | Paper lectures
Electronic screen
Video lectures via
electronic classes | Daily,
semester and
final exams | | 9th | 2 | Microbiological
examination of
Vegetables | How to detect vegetable contaminants and the influencing factors and help with their contamination | Paper lectures
Electronic screen
Video lectures via
electronic classes | Daily,
semester and
final exams | | 10 th | 2 | الامتحان | Exam | | | | 11 th | 2 | Microbiological
examination of
grains | How to detect grain
contaminants and
influencing factors
and help in their
contamination | Paper lectures
Electronic screen
Video lectures via
electronic classes | Daily,
semester and
final exams | | 12 th | 2 | Microbiological
examination of
fruit juices and
bottled water | How to detect contaminants in fruit juices and bottled water, and the factors affecting and helping to contaminate them | | | | 13 th | 2 | The canned food | The health effects of canned food, the materials used in manufacturing the cans, and the preservatives used in canning | Paper lectures Electronic screen Video lectures via electronic classes | Daily,
semester and
final exams | | 14 th | 2 | The toxins | Types of toxins and their sources | Paper lectures
Electronic screen
Video lectures via
electronic classes | Daily,
semester and
final exams | | 15 th | 2 | | Exam | | | | 11. Course Evaluation | | | | |--|--|--------------------------|-----------| | Overall score out of 100 | | | | | (Semester grade = 40, includi | ng: 25 for theoretica | l + 15 for practical) | | | (End-of-semester exam score | = 60, including 40 f | for theory + 20 for pr | ractical) | | 12. Learning and Teaching | g Resources | | | | Required textbo | -Fundamental food r | nicrobiology (Bibek R | ay,2004) | | (curricular books, if any) | | | | | Main references (sources) | -Food microbiology | (Mantrile TY,1987) | | | | -Practical food microbiology (D Robert & M Green wood, | | | | | 2003) | | | | Recommended books and | -Food microbiology | (William GF,1958) | | | references (scientific | references (scientific -Food Microbiology Laboratory Manual (Venata Vedu | | | | journals, reports) Mai and Melissa J) | | | | | | | | | | Electronic Reference | | ± • | | | Websites | ECkJGqf8qEwQaE-Bp | <u>ppia v82u i FQ/5M</u> | | # **Antibiotics** | 1. | Course Name: | | |----|--------------|--| #### **ANTIBIOTICS** 2. Course Code: #### **BIOT325** 3. Semester / Year: 2nd semester / 2024-2025 4. Description Preparation Date: #### 1-10-2024 5. Available Attendance Forms: Weekly attendance # 6. Number of Credit Hours (Total) / Number of Units (Total) - 2 Theoretical hours/week, one section * 15 weeks = 30 hours - 4 Practical hours/week per section * 15 weeks = 60 hours Total number of hours per section = 90 hours Number of units = 3 units (theoretical 2 +practical 1) # 7. Course administrator's name (mention all, if more than one name) Name: Prof. Dr. Suhad Saad Mahmood Email: suhad.mahmood@sc.uobaghdad.edu.iq #### 8. Course Objectives This course aims to provide a course of study in the physiology of mammals, especially humans, based on Knowledge of basic physiological principles of living organisms To develop more practical biological skills in the field of organismal physiology. To prepare students for a number of natural sciences courses in physiology, development and neuroscience, as well Pharmacology, pathology and zoology, among others. # 9. Teaching and Learning Strategies - 1. Clarification and explanation of the study materials by the academic staff through the whiteboard or using PowerPoint. - 2. Providing students with homework. - 3. Preparing reports related to academic vocabulary. - 4. Visit websites to obtain additional knowledge of academic subjects. - 5. Brainstorming during lectures. | 10. (| Cours | e Structure: Th | | | | |-----------------|-------|--|--|---|---------------------------------------| | Week | Hours | Unit or
subject name | Required Learning Outcomes | Learning method | Evaluation
method | | 1 st | 2 | Discovering OF antibiotics | Introduction in antibiotics | Paper lectures Electronic screen Video lectures via electronic classes | Daily,
semester and
final exams | | 2 nd | 2 | Biosynthesis of
secondary
metabolism
pathways | Mechanisms of antibiotics synthesis | Paper lectures
Electronic screen
Video lectures via
electronic classes | Daily,
semester and
final exams | | 3rd | 2 | Mechanism of
action of
antibiotics | Understanding the
Mechanism of action of
antibiotics on microbes | Paper lectures
Electronic screen
Video lectures via
electronic classes | Daily,
semester and
final exams | | 4 th | 2 | Classification of antibiotics | Types of antibiotics groups | Paper lectures
Electronic screen
Video lectures via
electronic classes | Daily,
semester and
final exams | | 5 th | 2 | Antibiotics properties | General characters of antibiotics | Paper lectures
Electronic screen
Video lectures via
electronic classes | Daily,
semester and
final exams | | 6 th | 2 | Antibiotics
that inhibit the
action of the
bacterial cell
wall | Types of groups and mode of action | Paper lectures Electronic screen Video lectures via electronic classes | Daily,
semester and
final exams | | | 2 | Seasonal
Exam | Seasonal Exam | | | | 7 th | | | | | | |------------------|---|--|---|---|---------------------------------------| | 8 th | 2 | Beta lactam
antibiotics | Pharmaceutical
specifications for this
group, extent of its
effect, and mechanism
of action | Paper lectures
Electronic screen
Video lectures via
electronic classes | Daily,
semester and
final exams | | 9 th | 2 | Pencillin group | Pharmaceutical specifications for this group, extent of its effect, and mechanism of action | Paper lectures
Electronic screen
Video lectures via
electronic classes | Daily,
semester and
final exams | | 10 th | 2 | Cephalosporin
es | Pharmaceutical specifications for this group, extent of its effect, and mechanism of action | Paper lectures
Electronic screen
Video lectures via
electronic classes | Daily,
semester and
final exams | | 11 th | 2 | Other beta lactam groups | Pharmaceutical specifications for this group, extent of its effect, and mechanism of action | Paper lectures
Electronic screen
Video lectures via
electronic classes | Daily,
semester and
final exams | | 12 th | 2 | A group of antibiotics that inhibit protein biosynthesis | Pharmaceutical specifications for this group, extent of its effect, and mechanism of action | Paper lectures
Electronic screen
Video lectures via
electronic classes | Daily,
semester and
final exams | | 13 th | 2 | A group of antibiotics that inhibit the biosynthesis of nucleic acids, | Pharmaceutical specifications for this group, extent of its effect, and mechanism of action | Paper lectures
Electronic screen
Video lectures via
electronic classes | Daily,
semester and
final exams | | 14 th | 2 | A group of
antibiotics that
inhibit some
metabolic
pathways of
bacteria
Send feedback
Side panels | Pharmaceutical specifications for this group, extent of its effect, and mechanism of action | Paper lectures
Electronic screen
Video lectures via
electronic classes |
Daily,
semester and
final exams | | 15 th | 2 | Resistance to antibiotics | Types and mechanisms of resistance | Paper lectures Electronic screen Video lectures via electronic classes | Daily,
semester and
final exams | | Week | Hours | Unit or subject name | Required Learning
Outcomes | Learning method | Evaluation
method | |-----------------|-------|--|--|---|---------------------------------------| | 1 st | 2 | Introduction to
antimicrobial
agents | The scientific history of antibiotics and their scientific definition | Paper lectures
Electronic screen
Video lectures via
electronic classes | Daily,
semester and
final exams | | 2 nd | 2 | Antibiotics | Its types and characteristics | Paper lectures
Electronic screen
Video lectures via
electronic classes | Daily,
semester and
final exams | | 3 rd | 2 | Evaluation of Disinfectants or comparison of antiseptics used against microorganisms | The practice steps of method | Paper lectures
Electronic screen
Video lectures via
electronic classes | Daily,
semester and
final exams | | 4 th | 2 | Test of
antibiotic
susceptibility
(sensitivity) | The practice steps of method | Paper lectures
Electronic screen
Video lectures via
electronic classes | Daily,
semester and
final exams | | 5 th | 2 | Minimum inhibition, concentration | The practice steps of method | Paper lectures
Electronic screen
Video lectures via
electronic classes | Daily,
semester and
final exams | | 6 th | 2 | Minimum
bactericidal
concentration | The practice steps of method | Paper lectures
Electronic screen
Video lectures via
electronic classes | Daily,
semester and
final exams | | 7 th | 2 | Epsilometer (E) test to detect bacterial sensitivity to antibiotics | The practice steps of method | Paper lectures
Electronic screen
Video lectures via
electronic classes | Daily,
semester and
final exams | | 8 th | 2 | Exam | | Paper lectures
Electronic screen
Video lectures via
electronic classes | Daily,
semester and
final exams | | 9th | 2 | Use alternatives to antibiotics | Define of alternative
ways and explain the
characters benefit of
each | Paper lectures
Electronic screen
Video lectures via
electronic classes | Daily,
semester and
final exams | | 10 th | 2 | Antimicrobial Drugs Used in Combination | Explain the combination and the effect of it one antibiotic activity | Paper lectures Electronic screen Video lectures via electronic classes | Daily,
semester and
final exams | |---------------------------|------|---|---|---|---------------------------------------| | 11 th | 2 | Detection of B-
lactamases | The practice steps of method | Paper lectures
Electronic screen
Video lectures via
electronic classes | Daily,
semester and
final exams | | 12 th | 2 | The Vitek
System | The practice steps of method | Paper lectures Electronic screen Video lectures via electronic classes | Daily,
semester and
final exams | | 13 th | 2 | Exam | | | | | 11. Course Evaluation | | | | | | | | | re out of 100 | | | | | , | _ | | ing: 25 for theoretica | * | | | | | nester exam score | | For theory + 20 for pr | actical) | | | | 0 | <u> </u> | ogy / Abdul Pahim | Ashir and Sal | | - | | | -Basics of Physiology / Abdul Rahim Ashir and Sal
Nasser Al-Alwaji | | | | Main references (sources) | | | -A textbook of pra-
edition) | ctical physiology, 20 | ` | | Recommended books and | | | -Human Physiolog | y/ Stuart Iron Fox/20 | 004 | | refere | nces | (scientific | | | | | | | eports) | | | | | Electr | onic | Referen | | a.org/wiki/Physiolog | | | Websi | tes | | https://www.medic
248791 | alnewstoday.com/ar | ticles/ | # **Immunology** | 1. Course Name: | | | | | |--------------------------------------|--|--|--|--| | Immunology | | | | | | 2. Course Code: | | | | | | BIOT330 | | | | | | 3. Semester / Year: | | | | | | 2 nd semester / 2024-2025 | | | | | | 4. Description Preparation Date: | | | | | | 1-4-2025 | | | | | | 5. Available Attendance Forms: | | | | | #### Weekly attendance #### 6. Number of Credit Hours (Total) / Number of Units (Total) 2 Theoretical hours/week, one section * 15 weeks = 30 hours 4 Practical hours/week per section * 15 weeks = 60 hours Total number of hours per section = 90 hours Number of units = 3 units (theoretical 2 +practical 1) # 7. Course administrator's name (mention all, if more than one name) Name: Prof. Dr. Mouruj A. Al aubydi Email: mouruj.najeeb@sc.uobaghdad.edu.iq # 8. Course Objectives This course aims to provide a course of study in the immunology of mammals, especially humans, based on knowledge of basic immunological principles of living organisms. To develop more practical biological skills in the field of organisms related immunology. To prepare students for a number of natural science courses in autoimmunity, acquired immunology, and various immunological tests among others. ### 9. Teaching and Learning Strategies - 1. Clarification and explanation of the study materials by the academic staff through the whiteboard or using PowerPoint. - 2. Providing students with homework. - 3. Preparing reports related to academic vocabulary. - 4. Visit websites to obtain additional knowledge of academic subjects. - 5. Brainstorming during lectures. | Week | Hours | Unit or subject name | Required Learning
Outcomes | Learning method | Evaluation
method | |-----------------|-------|----------------------------|--|---|---------------------------------------| | 1 st | 2 | Introduction to immunology | History and development of immunology | Paper lectures Electronic screen Video lectures via electronic classes | Daily,
semester and
final exams | | 2 nd | 2 | Types of Innate immunity | Factors determining innate immunity | Paper lectures
Electronic screen
Video lectures via
electronic classes | Daily,
semester and
final exams | | 3 rd | 2 | Cellular
factors | Inflammatory response, phagocytosis, and adaptive immunity | Paper lectures
Electronic screen
Video lectures via
electronic classes | Daily,
semester and
final exams | | 4 th | 2 | Adaptive passive immunity | Comparison between adaptive active and adaptive passive immunity | Paper lectures
Electronic screen
Video lectures via
electronic classes | Daily,
semester and
final exams | |------------------|---|--|--|---|---------------------------------------| | 5 th | 2 | Lymphoid
organs | The primary and the secondary lymphoid organs as components of the immune system | Paper lectures
Electronic screen
Video lectures via
electronic classes | Daily,
semester and
final exams | | 6 th | 2 | Activation of immune cells | Primary and secondary immune response | Paper lectures
Electronic screen
Video lectures via
electronic classes | Daily,
semester and
final exams | | 7 th | 2 | 1 st mid exam | | Paper lectures
Electronic screen
Video lectures via
electronic classes | Daily,
semester and
final exams | | 8 th | 2 | Antigens | Immunogens,
antigenic
determinants of
proteins | Paper lectures
Electronic screen
Video lectures via
electronic classes | Daily,
semester and
final exams | | 9 th | 2 | Human
leukocytes
antigens | Major histocompatibility complex and blood groups | Paper lectures
Electronic screen
Video lectures via
electronic classes | Daily,
semester and
final exams | | 10 th | 2 | General
characteristics
of antibodies | Maturation of the immune system, theories of antibody formation | Paper lectures
Electronic screen
Video lectures via
electronic classes | Daily,
semester and
final exams | | 11 th | 2 | Antibody – antigen interactions (Humeral immunity) | Forces involved in antibody – antigen interactions | Paper lectures
Electronic screen
Video lectures via
electronic classes | Daily,
semester and
final exams | | 12 th | 2 | Types of serological reactions | Precipitation and its applications, agglutination, and immunostaining | | | | 13 th | 2 | Complement | Complement pathways; classical and alternative | Paper lectures
Electronic screen
Video lectures via
electronic classes | Daily,
semester and
final exams | | | | | complement | | | |------------------|-------|------------------------------------|--|---|---------------------------------------| | | | | pathways | | | | 14 th | 2 | Hypersensitivi
ty | Hypersensitivity types | Paper lectures
Electronic screen
Video lectures via
electronic classes | Daily,
semester and
final exams | | 15 th | 2 | General
revision | | Paper lectures
Electronic screen
Video lectures via
electronic classes | Daily,
semester and
final exams | | | | | | | | | Cours | e Str | ucture: Practic | al | | | | Week | Hours | Unit or subject name | Required Learning
Outcomes | Learning method | Evaluation
method | | 1 st | 2 | Animals
identification | Proper identification of research animals, routes of administration, sampling methods | Paper lectures
Electronic screen
Video lectures via
electronic classes | Daily,
semester and
final exams | | 2 nd | 2 | The bactericidal activity of serum | The bactericidal effect of normal serum, and heatinactivated serum tested on bacteria. | Paper lectures
Electronic screen
Video lectures via
electronic classes | Daily,
semester and
final exams | | 3 rd | 2 | Antigen
Preparation | Preparation of somatic O antigen and H antigen | Paper lectures
Electronic screen
Video lectures via
electronic classes | Daily,
semester and
final exams | | 4 th | 2 | Rosette
Forming Cells
(RFCs) | Quantitation of T cells | Paper lectures
Electronic screen
Video lectures via
electronic classes | Daily,
semester and
final exams | | 5 th | 2 | ABO Blood
Grouping
System | ABO and Rh factor typing procedure, Compatibility testing – The cross matching | Paper lectures
Electronic screen
Video lectures via
electronic classes | Daily,
semester and
final exams | | 6 th | 2 | Enumeration of developed activated B cells (plasma cells) | Quantitation of plasma cells | Paper lectures
Electronic screen
Video lectures via
electronic classes | Daily,
semester and
final exams | |--------------------------|---|---|--|---|---------------------------------------| | 7 th | 2 | Phagocytosis | Phagocytic index of different organs | Paper lectures
Electronic screen
Video lectures via
electronic classes | Daily,
semester and
final exams | | 8 th | 2 | 1 st mid exam | | Paper lectures
Electronic screen
Video lectures via
electronic classes | Daily,
semester and
final exams | | 9 th | 2 | Agglutination test | Qualitative and quantitative agglutination | Paper lectures
Electronic screen
Video lectures via
electronic classes | Daily,
semester and
final exams | | 10 th | 2 | Precipitation test | Oudin tube test, Ouchterlony plate test | Paper lectures
Electronic screen
Video lectures via
electronic classes | Daily,
semester and
final exams | | 11 th | 2 | Complement fixation test | Complement Fixation Test: Principle, Procedure and Results | Paper lectures
Electronic screen
Video lectures via
electronic classes | Daily,
semester and
final exams | | 12 th | 2 | Enzyme-
Linked
Immunosorbe
nt Assays
(ELISA) | Types of ELISA | Paper lectures
Electronic screen
Video lectures via
electronic classes | Daily,
semester and
final exams | | 13 th | 2 | 2 nd mid exam | | Paper lectures
Electronic screen
Video lectures via
electronic classes | Daily,
semester and
final exams | | 14 th | 2 | | | Paper lectures
Electronic screen
Video lectures via
electronic classes | Daily,
semester and
final exams | | 15 th | 2 | | Exam | | | | | | | | | | | | | e Evaluation | | | | | Overall score out of 100 | | | | | | | (Semester grade = 40, including: 25 for theoretical + 15 for practical)
(End-of-semester exam score = 60, including 40 for theory + 20 for practical) | | | | |--|--|--|--| | 12. Learning and Teaching | g Resources | | | | Required textbooks (curric | | | | | books, if any) | | | | | Main references (sources) | Immunology, 2013 (3^{ed} edition) Clinical immunology and serology,2010 (3^{ed} edition) | | | | Recommended books and references (scientific journals, reports) | | | | | Electronic References, Websites | • https://books.google.iq/books/about/Imm
unology.html?id=fEZrwuvrPKUC&redir esc=y
https://www.youtube.com/watch?v=1KdlU1sQcy
c | | | # **Environmental biotechnology** | 1. Course Name: | |------------------------------| | Environmental Biotechnology | | 2. Course Code: | | BIOT335 | | 3. Semester / Year: | | Second generator / 2024 2025 | # Second semester / 2024-2025 # 4. Description Preparation Date: #### 1-10-2024 # 5. Available Attendance Forms: ## Weekly attendance ## 6. Number of Credit Hours (Total) / Number of Units (Total) - 2 Theoretical hours/week, one section * 15 weeks = 30 hours - 4 Practical hours/week per section * 15 weeks = 60 hours Total number of hours per section = 90 hours Number of units = 3 units (theoretical 2 +practical 1) # 7. Course administrator's name (mention all, if more than one name) Name: Prof. Dr. Nadhim Hasan Hayder Email: Nadhim.Haider@sc.uobaghdad.edu.iq # 8. Course Objectives This course aims to: Application of different environmental techniques and biological systems for removal of pollutants - The role of microorganisms in metabolism and manufacturing of differenr organic compounds - Using of bioremediation techniques for *in situ and ex situ* rendering of pollutants - Biodegradation of hydrocarbons by microorganisms - Exploitation of microorganism's potential for production of primary and secondary products such as biosurfactant, bio pesticides, biofuel and organic fertilizer in different fields. ## 9. Teaching and Learning Strategies - 1. Clarification and explanation of the study materials by the academic staff through the whiteboard or using PowerPoint. - 2. Providing students with homework. - 3. Preparing reports related to academic vocabulary. - 4. Visit websites to obtain additional knowledge of academic subjects. - 5. Brainstorming during lectures. | Week | Hours | Unit or subject name | Required Learning Outcomes | Learning method | Evaluation
method | |-----------------|-------|---|--|---|---------------------------------------| | 1 st | 2 | Introduction to
Ennironmental
Biotechnology | Importance of Environmental Biotechnology, Biomethylation, Biomagnification, Important terms in Environmental Biotechnology | Paper lectures
Electronic screen
Video lectures via
electronic classes | Daily,
semester and
final exams | | 2 nd | 2 | Biological
Treatment
Process | Techniques used in biological treatment, Process variables used in control of the biological processes, HRT, BOD load, F/ M ratio, Advantages of biological treatment plant, Attached film growth, Trickling filter, Biological disk, Fludized bea reactor | Paper lectures
Electronic screen
Video lectures via
electronic classes | Daily,
semester and
final exams | | 3rd | 2 | Waste nature
and microbial
growth | Source of wastewater, The nature and composition of waste water, Soft and hard organic matter (BOD) digestion, Microbial ecology, Types of bacteria in activated sludge, Bacterial flocs, Metabolism of bacteria, Microbial processes, ingestion, secretion, respiration, Growth of bacteria, the effect of pH, temp. Substrate concentration, toxicity | Paper lectures
Electronic screen
Video lectures via
electronic classes | Daily,
semester and
final exams | |-----------------|---|---|---|---|---------------------------------------| | 4 th | 2 | Metabolism of
Nitrogen ,
phosphorous
and Sulfur
compounds | Source of nitrogen compounds, Ammonification, Nitrification of ammonia, denitrification, Metabolism of phosphorous compounds, Metabolism of sulphur compounds, Wastewater treatment (Algal photosynthesis), Algal genera, Eutrofication | Paper lectures
Electronic screen
Video lectures via
electronic classes | Daily,
semester and
final exams | | 5 th | 2 | Biodegradation | Difinition of biodegradation process, Factors that effect in biodegradation, Aerobic and anaerobic degradation, _The advantage and disadvantages of anaerobic process, Sequential degradation | Paper lectures
Electronic screen
Video lectures via
electronic classes | Daily,
semester and
final exams | | 6 th | 2 | First Exam | First Exam | | | | | | | Cometaboli of MCA | | | |-----------------|---|------------------|------------------------------------|--------------------|--------------| | | | | and | | | | | | | MCPA,Biodgradation | | | | | | | steps of 2,4-D, | | | | | | Biodegradatio | Biodegradation OF | | | | | | n OF | HYDROCARBONS, | | Doily | | | | HERBICIDES | Aliphatic | Paper lectures | Daily, | | 7 th | 2 | AND | hydrocarbons, | Electronic screen | semester and | | , | 4 | PESTICIDES | Aromatic | Video lectures via | final exams | | | | LEGITCIDES | | electronic classes | | | | | | hydrocarbons, | | | | | | | Biodegradation OF | | | | | | | SOME SPECIFIC | | | | | | | WASTES Poly | | | | | | | cyclic aromatic | | | | | | | hydrocarbons | | | | | | | Principles of | | | | | | | Bioremediation, | | | | | | | Factors effects the | | | | | | | Bioremediation, | | | | | | | Characteristics of | |
 | | | 70. 11 | Microbial Populations | | | | | | Bioremediation | for Bioremediation | Paper lectures | Daily, | | 6.0 | _ | of | Processes, | Electronic screen | semester and | | 8 th | 2 | Environmental | Mechanisms of | Video lectures via | final exams | | | | Pollutants | oxidation, | electronic classes | | | | | | Environmental | Ciccuronic classes | | | | | | Factors, | | | | | | | Bioremediation | | | | | | | Strategies, Advantages | | | | | | | | | | | | | | and disadvantage of bioremediation | | | | | | | | | | | | | | Definition of | | | | | | | Biosurfactants, | | | | | | | Biosurfactant | | | | | | | Classification and | | | | | | | Their Microbial | | | | | | | Origin, The | | | | | | | mechanisms of | | Daily, | | | | Biosurfactant in | biosurfactant | Paper lectures | semester and | | 9th | 2 | Microbiolgy | interaction, Major | Electronic screen | | |) | _ | and | biosurfactant classes | Video lectures via | final exams | | | | Biotechnology | and microorganisms | electronic classes | | | | | | involved, | | | | | | | Physiological Role of | | | | | | | Biosurfactants, | | | | | | | Factors effecting | | | | | | | biosurfactant | | | | | | | production, | | | | | | | Advantages, | | | | | l | l . | 1 10 1 111111 500, | | | | | | | Applications of | | | |------------------|---|---|--|---|---------------------------------------| | | | | Biosurfactants | | | | 10 th | 2 | Metal Uptake
(Recovery) By
Microorganisms | Metal recovery by microbes, BIOLEACHING, BIOSORPTSON by Bacteria and Fungi, Microbial Mechanisms for Removal of Metal Ions, Immobilization, volatilization, Extracellular Precipitation, intracellular Accumulation, | Paper lectures
Electronic screen
Video lectures via
electronic classes | Daily,
semester and
final exams | | 11 th | 2 | Secon Exam | Secon Exam | Paper lectures
Electronic screen
Video lectures via
electronic classes | Daily,
semester and
final exams | | 12 th | 2 | Microbial Bio pesticides | Definition of Microbial pesticides, Advantages and disadvantages of Microbial pesticides, Bacteria insecticides, Mechanism of action of Bacillus thuringiensis on caterpillars, maximize the effectiveness of Bt treatments, Mechanisms of biological control, Antibiotic-mediated suppression | | | | 13 th | 2 | Bioleaching | Introduction – General biological principles – Application of bioleaching: 1. Mining process 2. Environmental protection 3. Bioleaching in conventional reactors. | Paper lectures
Electronic screen
Video lectures via
electronic classes | Daily,
semester and
final exams | | 14 th | 2 | Biomethanation | Introduction –
Anaerobic process –
Microbiological | Paper lectures
Electronic screen
Video lectures via
electronic classes | Daily,
semester and
final exams | | | | | requirements – | | | |------------------|-------|---|---|--|--| | | | | Process design – | | D '1 | | 15 th | 2 | Reactors | Types of reactors – Environmental application | Paper lectures Electronic screen Video lectures via electronic classes | Daily,
semester and
final exams | | | | | | | | | Cours | e Str | ucture: Practic | al | | | | Week | Hours | Unit or subject name | Required Learning
Outcomes | Learning method | Evaluation
method | | 1 st | 2 | Production of
cellulose by
microorganisms | Production of cellulose by microorganisms | Production of
cellulose by
microorganisms | Production of
cellulose by
microorganism | | 2 nd | 2 | Bioremediation | Bioremediation | Bioremediation | Bioremediation | | 3 rd | 2 | Biological
Oxygen
Demand
Measurement
(BOD) | Biological Oxygen
Demand Measurement
(BOD) | Biological Oxygen
Demand
Measurement (BOD) | Biological
Oxygen
Demand
Measurement
(BOD) | | 4 th | 2 | 4. Biofilm | 4. Biofilm | 4. Biofilm | 4. Biofilm | | 5 th | 2 | First Exam | First Exam | First Exam | First Exam | | 6 th | 2 | 5.
Biodegradation | 5. Biodegradation | 5. Biodegradation | 5.
Biodegradation | | = 4b | | | | | | | 7 th | 2 | 6. Production of biosurfactant by bacteria | | 8 th | 2 | biosurfactant by | biosurfactant by | biosurfactant by | 6. Production of biosurfactant | | | | biosurfactant by bacteria Bio absorption of heavy metal by | biosurfactant by bacteria Bio absorption of heavy metal by | biosurfactant by bacteria Bio absorption of heavy metal by | 6. Production of biosurfactant by bacteria Bio absorption of heavy metal by | | | | microbial
growth | | | microbial
growth | |------------------|---|---|-------------------------------------|---|---| | 11 th | 2 | Second Exam | Second Exam | Second Exam | Second Exam | | 12 th | 2 | Bioconversion
(biotransformati
on | Bioconversion
(biotransformation | Bioconversion
(biotransformation | Bioconversion
(biotransformat
ion | | 13 th | 2 | | | Paper lectures
Electronic screen
Video lectures via
electronic classes | Daily,
semester and
final exams | | 14 th | 2 | | | Paper lectures
Electronic screen
Video lectures via
electronic classes | Daily,
semester and
final exams | | 15 th | 2 | | | | | | | | | | | | Overall score out of 100 (Semester grade = 40, including: 25 for theoretical + 15 for practical) (End-of-semester exam score = 60, including 40 for theory + 20 for practical) | 12. Learning and Teachin | g Resources | |--|---| | Required text bo | Not found | | (curricular books, if any) | | | Main references (sources) | 1. Environmental Microbiology Third edition by Ian L. Pepper Charles P. Gerba Terry J. Gentry, (2015). 2. Environmental Microbiology Second Edition by Eugene L. Madsen (2016) 3. Environmental Biotechnology by T. Srinivas. (2008). | | Recommended books and references (scientific | | | journals, reports) | | | Electronic Referen | | | Websites | | # **Nanobiotechnology** #### 1. Course Name: # Nanobiotechnology #### 2. Course Code: **BIOT340** #### 3. Semester / Year: 2nd semester / 2024-2025 #### 4. Description Preparation Date: #### 1-10-2024 #### 5. Available Attendance Forms: #### Weekly attendance #### 6. Number of Credit Hours (Total) / Number of Units (Total) - 2 Theoretical hours/week, one section * 15 weeks = 30 hours - 4 Practical hours/week per section * 15 weeks = 60 hours Total number of hours per section = 90 hours Number of units = 3 units (theoretical 2 +practical 1) # 7. Course administrator's name (mention all, if more than one name) Name: Prof. Dr. Israa Ali Zaidan **Email:** israa.zaidan@sc.uobaghdad.edu.iq #### 8. Course Objectives - 1. This course deals with the basic concept of nanotechnology - 2. To understand the important of nanotechnology and its applications in biotechnology. #### 9. Teaching and Learning Strategies - 1. Clarification and explanation of the study materials by the academic staff through the whiteboard or using PowerPoint. - 2. Providing students with homework. - 3. Preparing reports related to academic vocabulary. - 4. Visit websites to obtain additional knowledge of academic subjects. - 5. Brainstorming during lectures. | Wee
k | Hour | Unit or subject name | Required Learning Outcomes | Learning method | Evaluation
method | |----------|------|----------------------------|--|---|---------------------------------------| | 1st | 2 | Introduction to the course | Nanotechnology
definitions, To know
the new properties of
nanomaterilas | Paper lectures
Electronic screen
Video lectures via
electronic classes | Daily,
semester and
final exams | | 2 nd | 2 | Historical
perspective of
micro and nano
scale | To know the definition
and history of
nanotechnology | Paper lectures
Electronic screen
Video lectures via
electronic classes | Daily,
semester and
final exams | |------------------|---|---|--|---|---------------------------------------| | 3 rd | 2 | Nano manufacturing technology, Advantages and disadvantages | To Describe the
different methods of
synthesis
nanomaterials | Paper lectures
Electronic screen
Video lectures via
electronic classes | Daily,
semester and
final exams | | 4 th | 2 | applications of nanotechnology | Determine the applications of nanotechnology in different aspects | Paper lectures
Electronic screen
Video lectures via
electronic classes | Daily,
semester and
final exams | | 5 th | 2 | Overview of Nano Fabrication Methods: Top- down and bottom-up approaches | To know the types
of
synthesis
nanomaterials | Paper lectures
Electronic screen
Video lectures via
electronic classes | Daily,
semester and
final exams | | 6 th | 2 | Exam 1 | | | | | 7 th | 2 | Types of
nanomaterials
organic and
inorganic
nanomaterials | Explain specific types of nanomaterials | Paper lectures
Electronic screen
Video lectures via
electronic classes | Daily,
semester and
final exams | | 8 th | 2 | Quantum dots, etc., Organic compounds and bio- applications of nano materials | To determine the physical base of quantum phenomena | Paper lectures
Electronic screen
Video lectures via
electronic classes | Daily,
semester and
final exams | | 9th | 2 | Characterizatio n Tools, Optical microscopy and Spectrophotome ter, Scanning Electron Microscope, AFM | Explain the characterization of nanomaterial by using different techniques | Paper lectures
Electronic screen
Video lectures via
electronic classes | Daily,
semester and
final exams | | 10 th | 2 | Quantum dots,
etc., Organic
compounds and
bio-applications | Applications of nanotechnology in biomedical field | Paper lectures
Electronic screen
Video lectures via
electronic classes | Daily,
semester and
final exams | | | | of nano
materials | | | | |------------------|---------------|---|---|---|--| | 11 th | 2 | Characterizatio n Tools, Optical microscopy and Spectrophotome ter, Scanning Electron | Explain Direct and indirect methods of characterization | Paper lectures
Electronic screen
Video lectures via
electronic classes | Daily,
semester and
final exams | | 12 th | 2 | Microscope,
AFM | Explain Direct
methods of
characterization | | | | 13 th | 2 | Application of
nano materials,
Carbon Nano
Tubes | Applications of nanotechnology in biomedical field | Paper lectures
Electronic screen
Video lectures via
electronic classes | Daily,
semester and
final exams | | 14 th | 2 | Nanopharmaceu
ticals and
Nanomedical
Device | Applications of nanotechnology in biotechnology field | Paper lectures Electronic screen Video lectures via electronic classes | Daily,
semester and
final exams | | 15 th | 2 | Bioengineered
Nanomaterials | Learn new technology of using nanomaterials | Paper lectures
Electronic screen
Video lectures via
electronic classes | Daily,
semester and
final exams | | | | | | | | | Cours | e Str | ucture: Practic | al | | | | Cours
Week | e Str
Hour | ucture: Practic
Unit or
subject name | Required Learning Outcomes | Learning method | Evaluation
method | | | | Unit or | Required Learning | Paper lectures Electronic screen Video lectures via electronic classes | | | Week | Hour | Unit or subject name | Required Learning Outcomes Examples for | Paper lectures
Electronic screen
Video lectures via | method Daily, semester and | | Week 1st | Hour 2 | Unit or subject name Introduction Synthesis Metal | Required Learning Outcomes Examples for comparison Metal salt and | Paper lectures Electronic screen Video lectures via electronic classes Paper lectures Electronic screen Video lectures via | Daily, semester and final exams Daily, semester and | | 5 th | 2 | Synthesis of
nanomaterials
by biological
method | Metal salt and plant extract | Paper lectures
Electronic screen
Video lectures via
electronic classes | Daily,
semester and
final exams | |------------------|-----|--|--------------------------------------|---|---------------------------------------| | 6 th | 2 | Exam 1 | | Paper lectures
Electronic screen
Video lectures via
electronic classes | Daily,
semester and
final exams | | 7 th | 2 | Nanomaterial characterization techniques | Characterization
Instruments | Paper lectures
Electronic screen
Video lectures via
electronic classes | Daily,
semester and
final exams | | 8 th | 2 | Biological
bio-medical
applications:
Antibacterial
activity test | Bacteria and culture
media | Paper lectures
Electronic screen
Video lectures via
electronic classes | Daily,
semester and
final exams | | 9 th | 2 | Antifungal activity test | Fungal and culture
media | Paper lectures
Electronic screen
Video lectures via
electronic classes | Daily,
semester and
final exams | | 10 th | 2 | Nanosensers | Glass slide with different materials | | | | 11 th | 2 | Nanopolymer | Chitosan | Paper lectures
Electronic screen
Video lectures via
electronic classes | Daily,
semester and
final exams | | 12 th | 2 | Mechanical
method | Glass ball | | | | 13 th | 2 | Applications
of
nanomaterials | Biomedical | Paper lectures
Electronic screen
Video lectures via
electronic classes | Daily,
semester and
final exams | | 14 th | 2 | | applications | Paper lectures
Electronic screen
Video lectures via
electronic classes | Daily,
semester and
final exams | | 15 th | 2 | Exam 2 | | | | | 11 (| OHE | e Evaluation | | | | Overall score out of 100 (Semester grade = 40, including: 25 for theoretical + 15 for practical) (End-of-semester exam score = 60, including 40 for theory + 20 for practical) # 12. Learning and Teaching Resources | Required textbooks (curricu | - Textbook of Nanoscience Nanotechnology | |--------------------------------------|---| | books, if any) | B S Murty, P Shankar, Baldev Raj, B B Rath and James Murday.2 | | Main references (sources) | - Nanomaterials in Bionanotechnology: Fundamentals | | | and Applications. Singh and Kshitij RB Singh.ISBN: | | | 9780367689445.2021 | | Recommended books and | - Textbook of Nanoscience Nanotechnology | | references (scientific | B S Murty, P Shankar, Baldev Raj, B B Rath and James Murday.2 | | journals, reports) | | | Electronic References, Websit | https://web.pdx.edu/~pmoeck/phy381/intro- | | , | nanotech.pdf | # **Research methodology** # 1. Course Name: Research methodology 2. Course Code: #### 3. Semester / Year: 2nd semester / 2024-2025 4. Description Preparation Date: 1-10-2024 5. Available Attendance Forms: Weekly attendance #### 6. Number of Credit Hours (Total) / Number of Units (Total) 2 Theoretical hours/week, one section * 15 weeks = 15 hours Total number of hours per section = 15 hours Number of units = 1 units (theoretical 1) # 7. Course administrator's name (mention all, if more than one name) Name: Prof. Dr. Asmaa Mohammed Saud Email: asmaa.saud@sc.uobaghdad.edu.iq #### 8. Course Objectives The goal is a general element and its presence is essential in research. Studies emphasize the necessity of including goals in the methodology of scientific research. This element indicates the goal that the researcher seeks to achieve and predicts the results that can be reached. The reader is interested in the goals, so the statements must be motivating and Close to his mind and expectations, and the objectives of scientific research should be set carefully and masterfully. • The research methodology aims at the way in which the researcher writes his research papers after the studies that he has worked on, the experiments that he conducted, and the previous studies from which he extracted his information and data, after collecting all the data that will benefit his study through known data collection tools, the most important of which are Previous studies, which may be information on which the researcher builds his research or uses them to prove a theory, and these studies must be documented at the end of the research as one of the conditions for publication in well-known scientific publishing outlets, of which peer-reviewed scientific journals are considered at the forefront. # 9. Teaching and Learning Strategies - 1. Clarification and explanation of the study materials by the academic staff through the whiteboard or using PowerPoint. - 2. Providing students with homework. - 3. Preparing reports related to academic vocabulary. - 4. Visit websites to obtain additional knowledge of academic subjects. - 5. Brainstorming during lectures. | 10. | Course | Structure: | Theory | |------------|--------|-------------------|--------| |------------|--------|-------------------|--------| | Subject name Outcomes Method | | | | | | |
--|-----------------|-------|------------------------------|----------------------------|---|----------------------| | to Research Methodology Course objectives Paper lectures Electronic screen Video lectures via electronic classes | Week | Hours | Ů | Required Learning Outcomes | Learning method | Evaluation
method | | 2 Model Main components of any research work Electronic screen Video lectures via electronic classes Consideratio ns in selecting a good research 2 good research The Research Problem Paper lectures Electronic screen Video | 1st | 2 | | Methodology | Electronic screen
Video lectures via | semester and | | 3rd 2 good research Problem Paper lectures Electronic screen Video lectures via electronic classes | 2 nd | 2 | | of any research | Electronic screen
Video lectures via | semester and | | problem, | 3rd | 2 | ns in
selecting a
good | | Electronic screen
Video lectures via | semester and | | 4th 2 Writing a research report Preparation of the research research research relation of the research | 4 th | 2 | research | - | Electronic screen
Video lectures via | semester and | | 5th 2 Meaning of review of literature literature review Literature review Paper lectures Electronic screen Video lectures via electronic classes | 5 th | 2 | review of | Literature review | Electronic screen
Video lectures via | semester and | | 6 th 2 Seasonal Exam | 6 th | 2 | | Seasonal Exam | | | | | | Objectives of | Problems | D 1 (| Daily, | |------------------|-------|--|--|---|---------------------------------------| | -41- | _ | review of | Identified in | Paper lectures Electronic screen | semester and | | 7 th | 2 | literature(| Writing a | Video lectures via | final exams | | | | ` | Literature Review | electronic classes | | | 8 th | 2 | Types of study designs | Research Methods | Paper lectures
Electronic screen
Video lectures via
electronic classes | Daily,
semester and
final exams | | 9th | 2 | - Types of
Research
Data | Data collection methods | Paper lectures
Electronic screen
Video lectures via
electronic classes | Daily,
semester and
final exams | | 10 th | 2 | Research tools: | Methods of
Collecting Primary
Data | Paper lectures
Electronic screen
Video lectures via
electronic classes | Daily,
semester and
final exams | | 11 th | 2 | -Meaning and definition of sampling -Functions of population and sampling -Methods of sampling | Sampling | Paper lectures
Electronic screen
Video lectures via
electronic classes | Daily,
semester and
final exams | | 12 th | 2 | | Seasonal exam | | | | 13 th | 2 | Presentation
of student
research 1 | -Application | Paper lectures
Electronic screen
Video lectures via
electronic classes | Daily,
semester and
final exams | | 14 th | 2 | Presentation
of student
research 2 | -Application | Paper lectures
Electronic screen
Video lectures via
electronic classes | Daily,
semester and
final exams | | 15 th | 2 | Presentation of student research 3 | -Application | Paper lectures Electronic screen Video lectures via electronic classes | Daily,
semester and
final exams | | 11. (| Cours | e Evaluation | | | | Overall score out of 100 (Semester grade = 40 for theoretical) (End-of-semester exam score = (60 theory only) | 12. Learning and Teaching | g Resources | |----------------------------|---| | Required textbo | | | (curricular books, if any) | | | Main references (sources) | Corlien M. Varkevisser, Indra | | | Pathmanathan, and Ann Brownlee. Designing | | | and conducting health systems research | | | projects: Volume 1 Proposal development and | | | fieldwork. KIT/IDRC. 2003 | | Recommended books and | Teaching and Learning Research Methodologies in | | references (scientific | Education: A Systematic Literature Review, Educ. Sci. | | journals, reports) | 2023, 13(2), 173; | | | https://doi.org/10.3390/educsci13020173 | | Electronic Reference | | | Websites | ventID=223&gclid=CjwKCAjwhJukBhBPEiwAniIcN
XmKk5qFg1VgiT-UvtF9UlxfAyqkOY | # Course Description Form for the 4th stage subjects # **Principles of genetic engineering** #### 1. Course Name: **Principles of genetic engineering** #### 2. Course Code: BIOT400 #### 3. Semester / Year: 1St semester / 2024-2025 #### 4. Description Preparation Date: #### 1-10-2024 #### 5. Available Attendance Forms: #### Weekly attendance #### 6. Number of Credit Hours (Total) / Number of Units (Total) 2 Theoretical hours/week, one section * 15 weeks = 30 hours 4 Practical hours/week per section * 15 weeks = 60 hours Total number of hours per section = 90 hours Number of units = 3 units (theoretical 2 +practical 1) # 7. Course administrator's name (mention all, if more than one name) -Name: Assist. Prof. Dr. Reema Mohammed Abed Email: Reema. abed@sc.uobaghdad.edu.iq -Name: Email: Prof.Dr. Abdulkareem Al-kazaz -Name: lecturer Dr. Zaid Ali Hussain #### 8. Course Objectives Principles of Genetic Engineering is a field of <u>Biology</u> that deals with the manipulation of DNA and genes of an organism through gene cloning in order to alter or modify a certain characteristic of an organism. An organism's genes are manipulated through artificial synthesis or entering a new DNA strand to the already existing genes of an organism in order to change a specific function or characteristic of that organism. These genetically modified organisms are then used for various purposes, for example, a plant can be genetically modified in order to produce fruits that have a longer shelf life. Genetic Engineering has done some groundbreaking research in the field of agriculture and was one of the key factors in the green revolution. #### 9. Teaching and Learning Strategies - 1. Clarification and explanation of the study materials by the academic staff through the whiteboard or using PowerPoint. - 2. Providing students with homework. - 3. Preparing reports related to academic vocabulary. - 4. Visit websites to obtain additional knowledge of academic subjects. - 5. Brainstorming during lectures. | 10. (| 0. Course Structure: Theory | | | | | | | |-----------------|-----------------------------|--|--|---|---------------------------------------|--|--| | Week | Hours | Unit or
subject name | Required Learning Outcomes | Learning method | Evaluation
method | | | | 1 st | 2 | Genetic
Engineering | Introduction to the science of technology and the scientists who discovered this science | Paper lectures
Electronic screen
Video lectures via
electronic classes | Daily,
semester and
final exams | | | | 2 nd | 2 | Cloning
Steps | The steps of the cloning process, which are 7 steps, are explained in detail | Paper lectures
Electronic screen
Video lectures via
electronic classes | Daily,
semester and
final exams | | | | 3rd | 2 | Isolation of total DNA | DNA isolation In different ways | Paper lectures
Electronic screen
Video lectures via
electronic classes | Daily,
semester and
final exams | | | | 4 th | 2 | Isolation of plasmid DNA | Different methods
of isolating
plasmids | Paper lectures
Electronic screen
Video lectures via
electronic classes | Daily,
semester and
final exams | | | | 5 th | 2 | Restriction enzymes | Introduction to cutting enzymes and how they work | Paper lectures
Electronic
screen
Video lectures via
electronic classes | Daily,
semester and
final exams | | | | 6 th | 2 | Types of
Restriction
enzymes | Types of cutting enzymes, their names, and different cutting methods | Paper lectures
Electronic screen
Video lectures via
electronic classes | Daily,
semester and
final exams | | | | 7 th | 2 | Factor
affecting on
restriction
enzymes | Factors that affect
the work of cutting
enzymes, such as
temperature,
concentration,
ions, and pH | Paper lectures
Electronic screen
Video lectures via
electronic classes | Daily,
semester and
final exams | | | | 8 th | 2 | Cloning
vectors | Introduction to cloning vectors | Paper lectures
Electronic screen
Video lectures via
electronic classes | Daily,
semester and
final exams | | | | 9 th | 2 | Types of cloning vectors | Types of natural and manufactured cloning vectors and their discovery | Paper lectures
Electronic screen
Video lectures via
electronic classes | Daily,
semester and
final exams | | | |------------------|-----------------------------|--|--|---|---------------------------------------|--|--| | 10 th | 2 | plasmids | Types of plasmids,
their composition,
and the genetic
map for each
plasmid | Paper lectures
Electronic screen
Video lectures via
electronic classes | Daily,
semester and
final exams | | | | 11 th | 2 | phages | Types of phages,
their composition,
and the genetic
map for each
phage | Paper lectures
Electronic screen
Video lectures via
electronic classes | Daily,
semester and
final exams | | | | 12 th | 2 | cosmids | Types of cosmids,
their structure, and
the genetic map
for each cosmid | Paper lectures
Electronic screen
Video lectures via
electronic classes | Daily,
semester and
final exams | | | | 13 th | 2 | expression
vectors | Types of expression vectors, their composition, and the genetic map for each vector | Paper lectures
Electronic screen
Video lectures via
electronic classes | Daily,
semester and
final exams | | | | 14 th | 2 | Application of cloning vectors in genetic egineering | Applications of cloning vectors in the medical, agricultural and industrial aspects and benefiting from them | Paper lectures
Electronic screen
Video lectures via
electronic classes | Daily,
semester and
final exams | | | | 15 th | 2 | exam | - | - | - | | | | Cours | Course Structure: Practical | | | | | | | | Week | Hours | Unit or subject
name | Required
Learning
Outcomes | Learning method | Evaluation
method | | | | 1 st | 2 | Types of buffers used | Solutions and buffers | Paper lectures
Electronic screen
Video lectures via
electronic classes | Daily,
semester and
final exams | | | | 2 nd | 2 | Methods of extraction from prokaryotes | Total DNA extraction from prokaryotic organisms (bacteria) | Paper lectures
Electronic screen
Video lectures via
electronic classes | Daily,
semester and
final exams | |------------------|---|--|--|---|---------------------------------------| | 3 rd | 2 | Methods of extraction from humans | Total DNA extraction from eukaryotic organisms (human blood) | Paper lectures
Electronic screen
Video lectures via
electronic classes | Daily,
semester and
final exams | | 4 th | 2 | Methods of extraction from plants | Total DNA
extraction from
eukaryotic
organisms (plants) | Paper lectures
Electronic screen
Video lectures via
electronic classes | Daily,
semester and
final exams | | 5 th | 2 | Methods for
extracting
plasmids from
bacteria | Extraction of plasmid DNA from prokaryotic organisms (bacteria) | Paper lectures
Electronic screen
Video lectures via
electronic classes | Daily,
semester and
final exams | | 6 th | 2 | Different
methods of
measuring DNA
and purity | Measuring the concentration and purity of extracted DNA | Paper lectures
Electronic screen
Video lectures via
electronic classes | Daily,
semester and
final exams | | 7 th | 2 | Electrical relay and its types | Electrophoresis of extracted DNA | Paper lectures
Electronic screen
Video lectures via
electronic classes | Daily,
semester and
final exams | | 8 th | 2 | Methods for retrieving electrophoresed DNA | Retrieval of electrophoresed DNA | Paper lectures
Electronic screen
Video lectures via
electronic classes | Daily,
semester and
final exams | | 9 th | 2 | Restriction
enzymes, their
types, and ligase | Restriction and ligase | Paper lectures
Electronic screen
Video lectures via
electronic classes | Daily,
semester and
final exams | | 10 th | 2 | Exam | - | - | - | | 11 th | 2 | Explain the conjugation | Insertion of genetic material (conjugation) | Paper lectures
Electronic screen
Video lectures via
electronic classes | Daily,
semester and
final exams | | 12 th | 2 | Transformation process | Introduction of genetic material (transformation) | Paper lectures
Electronic screen
Video lectures via
electronic classes | Daily,
semester and
final exams | |---------------------------|--|---|--|---|---------------------------------------| | 13 th | 2 | Introduction to the polymerase reaction and its discovery Types of polymerase reactions and their discovery | Polymerase chain reaction technology (PCR) Types of PCR technology | Paper lectures
Electronic screen
Video lectures via
electronic classes | Daily,
semester and
final exams | | 14 th | 2 | Introduction to
mutagenesis,
different types
and its discovery | Types of mutagenesis | Paper lectures
Electronic screen
Video lectures via
electronic classes | Daily,
semester and
final exams | | 15 th | 2 | Exam | - | - | - | | 11. (| Cours | e Evaluation | | | | | | | re out of 100 | | | | | , | _ | | _ | al + 15 for practical) | natical) | | | | ing and Teaching | | For theory + 20 for pr | actical) | | Requi | | 0 | , | c engineering / Gha | lib Al-Bakri | | _ | | books, if any) | principle of genera | | | | Main references (sources) | | | - Puehler, A. et al, A | .K. 1984.Advanced m | olecular | | | | | genetics - Rogen L., 1999. Applied molecular geneticsLeland, H. <i>et al.</i> 2019. Genetics | | | | Recon | Recommended books and -genetic, genes, genetic engineering | | | | | | refere | nces | (scientific | | | | | journa | als, re | eports) | | | | # **Animal tissues Culture** | 1. Course Name: | | | | | | | |--------------------------|--|--|--|--|--|--| | Animal tissues Culture | | | | | | | | 2. Course Code: | | | | | | | | BIOT420 | | | | | | | | 3. Semester / Year: | | | | | | | | 1st semester / 2024-2025 | | | | | | | Reference www. Genetic genie.org Electronic Websites ## 4. Description Preparation Date: #### 1-10-2024 #### 5. Available Attendance Forms: # Weekly attendance # 6. Number of Credit Hours (Total) / Number of Units (Total) 2 Theoretical hours/week, one section * 15 weeks = 30 hours 4 Practical hours/week per section * 15 weeks = 60 hours Total number of hours per section = 90 hours Number of units = 3 units (theoretical 2 +practical 1) # 7. Course administrator's name (mention all, if more than one name) Name: Prof. Dr. Maha Fakhry Altaee Email: Maha.Fakhry@sc.uobaghdad.edu.iq # 8. Course Objectives - 1-The course aims to introduce the student to everything related to the animal cell and its morphological forms. - 2- Familiarize the student with methods of cell development, transplantation, and propagation in ex vivo media. - 3- Studying various structures and how to utilize them to direct cells towards specialized growth for a specific type of cell. - 4- Introducing the student to how to isolate cells from each other using biological techniques. - 5- Evaluating the important methods for evaluating cell growth and the methods used to inhibit the growth of some of them through therapeutic methods. # 9. Teaching and Learning Strategies - 1. Clarification and explanation of the study materials by the academic staff through the whiteboard or using PowerPoint. - 2. Providing students with homework. - 3. Preparing reports related to academic vocabulary. - 4. Visit websites to obtain additional knowledge of academic subjects. - 5. Brainstorming during lectures. | Week | Hours | Unit or subject
name | Required
Learning
Outcomes | Learning method | Evaluation
method | |-----------------|-------|--|---|---|---------------------------------------| | 1 st | 2 | History of cell culture, Basic and application of cell culture | The major scientist who contribute to development of it | Paper lectures
Electronic screen
Video lectures via
electronic classes | Daily,
semester and
final exams | | 2 nd | 2 | Origin of culture cells | From which kind of cells to collect | Paper lectures
Electronic screen
Video lectures via
electronic classes | Daily,
semester
and
final exams | | | | The culture | | D 1 / | Daily, | |------------------|---|--|---|---|---------------------------------------| | 3rd | 2 | environment | Ph, temperature, osmosis, etc | Paper lectures
Electronic screen
Video lectures via
electronic classes | semester and final exams | | 4 th | 2 | Subculture | How to made subculture | Paper lectures
Electronic screen
Video lectures via
electronic classes | Daily,
semester and
final exams | | 5 th | 2 | Differentiation of cells | How cell differentiate in culture to have specific function | Paper lectures
Electronic screen
Video lectures via
electronic classes | Daily,
semester and
final exams | | 6 th | 2 | | Seasonal Exam | | | | 7 th | 2 | Cell line | How to prepare cell line | Paper lectures
Electronic screen
Video lectures via
electronic classes | Daily,
semester and
final exams | | 8 th | 2 | Cloning and
the principle of
selection, | Cloning and selection of cells | Paper lectures
Electronic screen
Video lectures via
electronic classes | Daily,
semester and
final exams | | 9 th | 2 | Isolation
techniques for
Monolayer
clone | Monolayers | Paper lectures
Electronic screen
Video lectures via
electronic classes | Daily,
semester and
final exams | | 10 th | 2 | Cell separation: Suspension &Others | How to select particular cell type form suspension | Paper lectures
Electronic screen
Video lectures via
electronic classes | Daily,
semester and
final exams | | 11 th | 2 | Cell Interaction with substrate | Cell to cell interaction to make tissue | Paper lectures
Electronic screen
Video lectures via
electronic classes | Daily,
semester and
final exams | | 12 th | 2 | Isolation cell
technology
:Cell Density
and isopytic
sedimentation | Separation of cells
depending of cell
characteristics | Paper lectures
Electronic screen
Video lectures via
electronic classes | | | 13 th | 2 | | Seasonal exam | | | | 14 th | 2 | Cell strains | How to made cell strain | Paper lectures
Electronic screen
Video lectures via
electronic classes | Daily,
semester and
final exams | | 15 th | 2 | Some applications of tissue culture | Drugs, toxins toxic effect study | Paper lectures
Electronic screen
Video lectures via
electronic classes | Daily,
semester and
final exams | |------------------|-------|---|---|---|---------------------------------------| | | | | | | | | Cours | e Str | ucture: Practical | , | | | | Week | Hours | Unit or subject
name | Required Learning
Outcomes | Learning
method | Evaluation
method | | 1 st | 2 | Sterilization of glassware and media | -types of media
-glassware
-media preparation | Paper lectures Electronic screen Video lectures via electronic classes | Daily,
semester and
final exams | | 2 nd | 2 | Morphology of cell culture | -Origin of culture
-Types of cell | Paper lectures Electronic screen Video lectures via electronic classes | Daily,
semester and
final exams | | 3 rd | 2 | Cell culture contamination | -types of contamination | Paper lectures Electronic screen Video lectures via electronic classes | Daily,
semester and
final exams | | 4 th | 2 | Primary cell
culture | -Preparation
primary culture
-passage no. | Paper lectures Electronic screen Video lectures via electronic classes | Daily,
semester and
final exams | | 5 th | 2 | Secondary cell
culture | Methods for culturing | Paper lectures Electronic screen Video lectures via electronic classes | Daily,
semester and
final exams | | 6 th | 2 | Material and method | Culture of chick
embryo fibroblast | Paper lectures Electronic screen Video lectures via electronic classes | Daily,
semester and
final exams | | 7 th | 2 | | Seasonal exam | | | | 8 th | 2 | Methods for culturing Suspension and adherent cells | Sub- culturing | Paper lectures Electronic screen Video lectures via electronic classes | Daily,
semester and
final exams | | 9 th | 2 | -Cryopreserve
media
-cryopreserve
process | Cryopreservation | Paper lectures Electronic screen Video lectures via electronic classes | Daily,
semester and
final exams | |------------------|---|---|--|--|---------------------------------------| | 10 th | 2 | Methods for culturing Suspension and adherent cells | Transformation | Paper lectures Electronic screen Video lectures via electronic classes | Daily,
semester and
final exams | | 11 th | 2 | Methods for culturing Suspension and adherent cells | Immortalization of animal cell | Paper lectures Electronic screen Video lectures via electronic classes | Daily,
semester and
final exams | | 12 th | 2 | Surgical procedure Primary culture of bone marrow | Isolation of stem cells | Paper lectures Electronic screen Video lectures via electronic classes | Daily,
semester and
final exams | | 13 th | 2 | | Seasonal Exam | | | | 14 th | 2 | Isolation of stem cells | Isolation of cells
classic protocol
mesenchymal stem
isolation by ficoll
or percol | Paper lectures Electronic screen Video lectures via electronic classes | Daily,
semester and
final exams | | 15 th | 2 | seminar | | | | | | | | | | | Overall score out of 100 (Semester grade = 40, including: 25 for theoretical + 15 for practical) (End-of-semester exam score = 60, including 40 for theory + 20 for practical) #### 12. Learning and Teaching Resources **Required-textbooks** No required books, only lectures. (curricular books, if any) Cell Culturing theory and practice, ed. By Tim **Main references (sources)** Walton Animal cell culture and Technology, (2005) 2nd by Michael Butler Recommended books and Any book in animal tissue culture (scientific references journals, reports...) Electronic Reference www.animaltissueculture .org Websites # Plant tissue culture #### 1. Course Name: Plant tissue culture 2. Course Code: #### **BIOT410** #### 3. Semester / Year: 1st semester / 2024-2025 #### 4. Description Preparation Date: #### 1-10-2024 #### 5. Available Attendance Forms: #### Weekly attendance #### 6. Number of Credit Hours (Total) / Number of Units (Total) 2 Theoretical hours/week, one section * 15 weeks = 30 hours 4 Practical hours/week per section * 15 weeks = 60 hours Total number of hours per section = 90 hours Number of units = 3 units (theoretical 2 +practical 1) #### 7. Course administrator's name (mention all, if more than one name) Name: lecturer. Dr. zainab farqad Mahmood mukhtar Email: zainab.mukhtar@sc.uobaghdad.edu.iq #### 8. Course Objectives This course explains the concept of plant tissue culture It aims to deal with the techniques of tissue culture for different plants in order to produce an new whole plant from stem cells, single cells, parts of leaves or roots to produce a new plant on a culture medium supplemented with nutrients and plant growth regulators This science work on producing plants in a short period of time having new traits like GM plants or disease free plants that is important to man kind #### 9. Teaching and Learning Strategies - 1. Clarification and explanation of the study materials by the academic staff through the whiteboard or using PowerPoint. - 2. Providing students with homework. - 3. Preparing reports related to academic vocabulary. - 4. Visit websites to obtain additional knowledge of academic subjects. - 5. Brainstorming during lectures. | Week | Hours | Unit or subject name | Required Learning
Outcomes | Learning method | Evaluation
method | |------|-------|------------------------|--|---|---------------------------------------| | 1st | 2 | Introduction of P.T.C. | Understanding what P.T.C is and its importance | Paper lectures
Electronic screen
Video lectures via
electronic classes | Daily,
semester and
final exams | | 2 nd | 2 | Importance
and
applications of
P.T.C | The development of P.T.C techniques through history | Paper lectures
Electronic screen
Video lectures via
electronic classes | Daily,
semester and
final exams | |------------------|---|--|---|---|---------------------------------------| | 3 rd | 2 | P.T.C initiation and applications | Callus production
from different plant
sources | Paper lectures
Electronic screen
Video lectures via
electronic classes | Daily,
semester and
final exams | | 4 th | 2 | Types of P.T.C and their importance | Applications of the different types of P.T.Cs | Paper lectures
Electronic screen
Video lectures via
electronic classes | Daily,
semester and
final exams | | 5 th | 2 | Mid exam 1 | | | | | 6 th | 2 | Totipotency,
Cytodifferenti
ation and
organogenesis | Identifying the plants differentiation mechanisms | Paper lectures
Electronic screen
Video lectures via
electronic classes | Daily,
semester and
final exams | | 7 th | 2 | Somatic and zygotic embryogenesi s | Knowing the differences between types of plant embryos | Paper
lectures
Electronic screen
Video lectures via
electronic classes | Daily,
semester and
final exams | | 8 th | 2 | Protoplast
cultures | Introducing the types, mechanisms and applications of protoplast cultures | Paper lectures
Electronic screen
Video lectures via
electronic classes | Daily,
semester and
final exams | | 9 th | 2 | Meristem
cultures | What is the meristem and its importance in creating diseases free plants | Paper lectures
Electronic screen
Video lectures via
electronic classes | Daily,
semester and
final exams | | 10 th | 2 | Production of
secondary
metabolites
using P.T.C | Mechanisms for increasing the production of S.M through P.T.C | Paper lectures
Electronic screen
Video lectures via
electronic classes | Daily,
semester and
final exams | | 11 th | 2 | Artificial
seeds | Their definition,
importance and
production
techniques | Paper lectures
Electronic screen
Video lectures via
electronic classes | Daily,
semester and
final exams | | 12 th | 2 | Genetically
modified
plants | What is G.M and
how are they
produced through
P.T.C techniques | Paper lectures
Electronic screen
Video lectures via
electronic classes | Daily,
semester and
final exams | | 13 th | 2 | Mid exam 2 | | | | | 14 th | 2 | Nanotechnolo
gy and P.T.C | The use of nano particles in P.T.C science | Paper lectures
Electronic screen
Video lectures via
electronic classes | Daily,
semester and
final exams | |------------------|-------|--|--|---|---------------------------------------| | 15 th | 2 | Somatic seeds | Introducing the techniques and importance of somatic seeds | Paper lectures
Electronic screen
Video lectures via
electronic classes | Daily,
semester and
final exams | | | | | | | | | Cours | e Str | ucture: Practic | al | | | | Week | Hours | Unit or subject name | Required Learning
Outcomes | Learning method | Evaluation
method | | 1 st | 2 | P.T.C lab | Introducing the main
and important tools
and equipment used
in P.T.C work | Paper lectures
Electronic screen
Video lectures via
electronic classes | Daily,
semester and
final exams | | 2 nd | 2 | Initiation of P.T.C cultures | Presenting the basic mediums and techniques used in P.T.C lab | Paper lectures
Electronic screen
Video lectures via
electronic classes | Daily,
semester and
final exams | | 3 rd | 2 | Callus cultures | Initiation of callus
cultures from
different plant
origins | Paper lectures
Electronic screen
Video lectures via
electronic classes | Daily,
semester and
final exams | | 4 th | 2 | Cell cultures | The production of cell cultures and their importance | Paper lectures
Electronic screen
Video lectures via
electronic classes | Daily,
semester and
final exams | | 5 th | 2 | Midterm exam | | | | | 6 th | 2 | Cytodifferenti
ation and
organogenesis | It's a continuous
level after callus
production to reach
plantlets level | Paper lectures
Electronic screen
Video lectures via
electronic classes | Daily,
semester and
final exams | | 7 th | 2 | Somatic
embryogenesi
s | The production of somatic embryos from different plant sources | Paper lectures
Electronic screen
Video lectures via
electronic classes | Daily,
semester and
final exams | | 8 th | 2 | Protoplast cultures | The extraction of protoplast for different manipulation aims | Paper lectures
Electronic screen
Video lectures via
electronic classes | Daily,
semester and
final exams | | 9 th | 2 | Disease free plants | Using meristem to produce disease free plants through P.T.C techniques | Paper lectures
Electronic screen
Video lectures via
electronic classes | Daily,
semester and
final exams | | |---|---------|--------------------------|--|---|---------------------------------------|--| | 10 th | 2 | Midterm exam 2 | | | | | | 11 th | 2 | Secondary
metabolites | Using different P.T.C techniques to increase S.M production in callus cultures | Paper lectures
Electronic screen
Video lectures via
electronic classes | Daily,
semester and
final exams | | | 12 th | 2 | Artificial seeds | Techniques used for
the production of
artificial seeds | Paper lectures
Electronic screen
Video lectures via
electronic classes | Daily,
semester and
final exams | | | 13 th | 2 | N.P and P.T.C | Using different nanoparticles in P.T.C for various applications | Paper lectures
Electronic screen
Video lectures via
electronic classes | Daily,
semester and
final exams | | | 14 th | 2 | G.M plants | Initiating plants with different enhanced traits through P.T.C | Paper lectures
Electronic screen
Video lectures via
electronic classes | Daily,
semester and
final exams | | | 15 th | 2 | | | | | | | 11 (| Ourg | e Evaluation | | | | | | | | re out of 100 | | | | | | | | | ling: 25 for theoretica | | | | | | | | e = 60, including 40 f | for theory + 20 for pr | ractical) | | | | | ing and Teachin | | ay by Domowatt K | C 2009 | | | Requi | | books, if any) | Plant biotechnolo | gy by Kamawali K | G 2006 | | | | | ences (sources) | Plant tissue cu | lture by S.P.misra | | | | | 2019 | | | | | | | Recommended books and | | | | ues of Plant Tissue | <u>Culture</u> | | | references (scientific journals, reports) | | | Dagla, H. | R. (2012). | Plant tiss | | | Journa | a18, F(| eports) | | culture. Resonance. 767–759, (8) 17, | | | | Electr | onic | Referer | https://scholar.goog | gle.com/scholar?q=P | lant+ | | | Websi | ites | | Tissue+Culture:+A | Tissue+Culture:+An+Introductory+Text&hl= | | | en&as_sdt=0&as_vis=1&oi=scholart # **Principles of Immunogenitics** #### 1. Course Name: #### **Principles of Immunogenetics** #### 2. Course Code: BIOT415 #### 3. Semester / Year: 2nd semester / 2024-2025 # 4. Description Preparation Date: #### 1-4-2025 #### 5. Available Attendance Forms: #### Weekly attendance #### 6. Number of Credit Hours (Total) / Number of Units (Total) - 2 Theoretical hours/week, one section * 15 weeks = 30 hours - 4 Practical hours/week per section * 15 weeks = 60 hours Total number of hours per section = 90 hours Number of units = 3 units (theoretical 2 +practical 1) #### 7. Course administrator's name (mention all, if more than one name) Name Ibtihal A . Al-Karaawi <u>ibtihal.Majeed@sc.uobaghdad.edu.iq</u> Wasan Wael Mohammed Ali <u>Wasan.Ali@sc.uobaghdad.edu.iq</u> # 8. Course Objectives This course aims to provide a course of study in human immunogenetics, based on knowledge of basic genetic principles of living organisms , To develop more practical genetic skills in the field of human genetics, autoimmune diseases and related genetics. To prepare students for a number of natural science courses in immunology, genetics and the human genome, and also Pharmacogenomics, disease therapeutics and human genomics, among others. #### 9. Teaching and Learning Strategies - 1. Clarification and explanation of the study materials by the academic staff through the whiteboard or using PowerPoint. - 2. Providing students with homework. - 3. Preparing reports related to academic vocabulary. - 4. Visit websites to obtain additional knowledge of academic subjects. - 5. Brainstorming during lectures. | | | Unit or subject name | Required Learning | Learning | Evaluation | |-----|------------|----------------------|-------------------|----------|------------| | W | Ho | | Outcomes | method | method | | eek | urs | | | | | | , | 9 1 | | | | | | 1 st | 2 | -Innate immunity -Adaptive immunity -Principles of ImmunogeneticS | Introduction to the
Immunogenetics | Paper
lectures
Electronic
screen
Video
lectures via
electronic
classes | Daily, semester
and final exams | |-----------------|---|---|---|---|------------------------------------| | 2 nd | 2 | -The Functions of MHC -MHC Class I ,II,III -Structure of MHC class I,II.III: | The major
histocomtpatibility
complex | Paper
lectures
Electronic
screen
Video
lectures via
electronic
classes | Daily, semester
and final exams | | 3rd | 2 | -Human MHC Class I Genes -Human MHC Class II Genes -Human Class III Genes | Major
histocompatibility
complex (MHC)
genes | Paper
lectures
Electronic
screen
Video
lectures via
electronic
classes | Daily, semester
and final exams | | 4 th | 2 | isoagglutinogen, -Inheritance of A and -B genes -H gene codes | Genetics of ABO and
H Antigen | Paper
lectures
Electronic
screen
Video
lectures via
electronic
classes | Daily, semester
and final exams | | 5 th | 2 | | EXAM | Paper
lectures
Electronic
screen
Video
lectures via
electronic
classes | Daily, semester
and final exams | | 6 th | 2 | -Basic Structure
-General Functions
-Human
Immunoglobulin
Classes | Immunoglobulins | | | | 7 th | 2 | Gene class-
Inheritance- | Genetics of immunoglobuline gene | | | | 8 th | 2 | Bacterial diseases-
Viral diseases-
Parasitic diseases- | HLA and
disease
infectious | Paper
lectures
Electronic
screen
Video
lectures via | Daily, semester
and final exams | | | | | | electronic
classes | |
------------------|---|---|---|---|------------------------------------| | 9th | 2 | -Innate immunity -Adaptive immunity -Principles of ImmunogeneticS | Introduction to the
Immunogenetics | Paper
lectures
Electronic
screen
Video
lectures via
electronic
classes | Daily, semester
and final exams | | 10 th | 2 | The Functions of MHCMHC Class I -Structure of MHC class I: | The major histocomtpatibility complex | | | | 11 th | 2 | -Human MHC Class I Genes - Human MHC Class II Genes -Human Class III Genes | Major
histocompatibility
complex (MHC)
genes | Paper
lectures
Electronic
screen
Video
lectures via
electronic
classes | Daily, semester
and final exams | | 12 th | 2 | isoagglutinogen,Inheritance of A and -B genes -H gene codes | Genetics of ABO and
H Antigen | | | | 13 th | 2 | | EXAM | Paper lectures Electronic screen Video lectures via electronic classes | Daily, semester
and final exams | | 14 th | 2 | -Basic Structure
-General Functions
-Human
Immunoglobulin
Classes | Immunoglobulins | Paper lectures Electronic screen Video lectures via electronic classes | Daily, semester
and final exams | | 15 th | 2 | Gene class-
Inheritance- | Genetics of
immunoglobuline
gene | | | | | | | | | | | | | Cours | se Structure: Practical | | | | Week | Hours | Unit or subject name | Required Learning Outcomes | Learning
method | Evaluation
method | |-----------------|-------|---|--|---|------------------------------------| | 1 st | 2 | Immunity types-
Innate immunity-
Adaptive immunity-
-Immune cells | Immunogenetics Introduction and background | Paper
lectures
Electronic
screen
Video
lectures via
electronic
classes | Daily, semester
and final exams | | 2 nd | 2 | Sources for DNA isolation Basic Steps in DNA Extraction DNA isolation from Blood Blood Collection DNA Isolation Procedure using a kit | DNA Extraction | Paper lectures Electronic screen Video lectures via electronic classes | Daily, semester
and final exams | | 3 rd | 2 | Phenol-chloroform
method of DNA
extraction from blood
samples | Manual DNA extraction methods | Paper
lectures
Electronic
screen
Video
lectures via
electronic
classes | Daily, semester
and final exams | | 4 th | 2 | -prepare gele -microwave soluble -put gele in ruk and thumb -electrophoreses | Gel Electrophoresis | | | | 5 th | 2 | -prepar raction
-master mix -primers
-PCR programe | Polymerase chain
reaction (PCR | Paper lectures Electronic screen Video lectures via electronic classes | Daily, semester
and final exams | | 6 th | 2 | HLA typing
Methods for HLA
typing
HLA typing applications | Human leukocyte
anti gen (HLA) | Paper
lectures
Electronic
screen
Video
lectures via
electronic
classes | Daily, semester
and final exams | | 7 th | 2 | The enzyme-linked immunosorbent assay | Immunoassays | Paper
lectures | Daily, semester and final exams | | | | (ELISA) ELISA | | Electronic | | |------------------|---|---|--|---|------------------------------------| | | | Analysis | | screen | | | | | ELISA application | | Video | | | | | | | lectures via | | | | | | | electronic | | | | | | | classes | | | | | | | Paper | | | | | | | lectures | | | | | | Restriction fragment length polymorphism | Electronic | Daily, semester | | 8 th | 2 | RFLP Analysis | (RFLP) | screen
Video | and final exams | | | | RFLP application | () | lectures via | | | | | | | electronic | | | | | | | | | | | | | The Comet Assay | classes | | | | | | • | | | | 9th | 2 | Sanger method | DNA sequencing | | | | 9 | 2 | Applications | | | | | | | | | | | | | | Torrangia de ser | Torres | | | | | | Immunity types- | Immunogenetics Introduction and | | | | 10 th | 2 | Innate immunity- | background | | | | | | Adaptive immunity- | 2.11-1-6- 2.11-11 | | | | | | Immune cells- | | | | | 11 th | 2 | Immunity types- Innate immunity- Adaptive immunity- Immune cells- | Immunogenetics
Introduction and
background | Paper
lectures
Electronic
screen
Video
lectures via
electronic
classes | Daily, semester
and final exams | | | | Phenol-chloroform | Manual DNA | | | | 12 th | 2 | method of DNA | extraction methods | | | | | | extraction from blood | | | | | | | samples | | | | | | | -prepare gele
-microwave soluble | | Paper | Daily, semester | | 13 th | 2 | -put gele in ruk and | Gel Electrophoresis | lectures
Electronic | and final exams | | | | thumb | | screen | | | | | -electrophoreses | | | | | | | | | Video | | | |--------------------|---------|----------------------------|--|-----------------|-----------------|--| | | | | | lectures via | | | | | | | | electronic | | | | | | | | classes | | | | | | | | Paper | | | | | | | | lectures | | | | | | -prepar raction | | Electronic | Daily, semester | | | 14 th | 2 | -master mix - | Polymerase chain | screen
Video | and final exams | | | | | primers | reaction (PCR | lectures via | | | | | | -PCR programe | | electronic | | | | | | | | classes | | | | ₁ Æth | | | | ciasses | | | | 15 th | 2 | exam | | | | | | | | | | | | | | 11. | Cour | se Evaluation | | | | | | | | re out of 100 | | | | | | | | | : 25 for theoretical + 1: | - | | | | | | | 60, including 40 for the | eory + 20 for | practical) | | | 12. | Learı | ning and Teaching F | Resources | | | | | Requ | ired 1 | textbooks (curricu ' | 'Molecular Biology | | | | | books | s, if a | ny) | Authored by Dr. Ghalib Al-Bakri" | | | | | Main | refe | rences (sources) | 1-Disease Delusion: by Jeffrey S. Bland | | | | | | | (| (Author), Mark Hyman. 2015 | | | | | | | | 2- Human Genetic Diseases. Edited by Dijana | | | | | | | | Plaseska-Karanfilska.2011 | | | | | Reco | mmei | nded books and l | Human Genetic Diseases1- | | | | | refer | ences | (scientific | • 2- The genetic basis of disease. Essays in | | | | | journals, reports) | | | Biochemistry 62(5):643-723 | | | | | | | 1 | DOI: 10.1042/EBC20170053 | | | | | Elect | ronic | Reference- | -National human genome research institutes | | | | | Webs | sites | | 2- Online Degrees Blo | g What You | Need to | | | | | 1 | Know About 5 Most Common Genetic | | | | | | | | Disorders | | | | # **Virology and Vaccines** | 1. Course Name: | |--------------------------------------| | Virology and Vaccines | | 2. Course Code: | | BIOT330 | | 3. Semester / Year: | | 2 nd semester / 2024-2025 | | 4. Description Preparation Date: | | 1-10-2024 | | 5. Available Attendance Forms: | | Weekly attendance | #### 6. Number of Credit Hours (Total) / Number of Units (Total) 2 Theoretical hours/week, one section * 15 weeks = 30 hours 4 Practical hours/week per section * 15 weeks = 60 hours Total number of hours per section = 90 hours Number of units = 3 units (theoretical 2 +practical 1) # 7. Course administrator's name (mention all, if more than one name) Name: Ass. Prof. Dr. Wisal Salman Abd Email: wisal.abd@sc.uobaghdad.edu.iq #### 8. Course Objectives This course includes coverage of the concepts of (viruses and vaccines) and includes the structures of viral forms, their classification, the rules upon which these classifications are built, the process of viral reproduction and pathogenesis, and how the virus causes diseases based on the precise strategy followed by the virus, the method of diagnosis and treatment, and the foundations upon which the therapeutic process is built. It also includes the foundations Vaccines Then we go into the viral groups individually in detail ### 9. Teaching and Learning Strategies - 1. Clarification and explanation of the study materials by the academic staff through the whiteboard or using PowerPoint. - 2. Providing students with homework. - 3. Preparing reports related to academic vocabulary. - 4. Visit websites to obtain additional knowledge of academic subjects. - 5. Brainstorming during lectures. | Week | Hours | Unit or
subject name | Required Learning Outcomes | Learning method | Evaluation
method | | |-----------------|-------|---------------------------------|---|---|---------------------------------------|--| | 1 st | 2 | Introduction to
Virology | What is the virus. Evolutionary origin of the virus. Classification of the virus. Principles of virus structure. | Paper lectures
Electronic screen
Video lectures via
electronic classes | Daily,
semester and
final exams | | | 2 nd | 2 | Introduction
to
structure | -Chemical composition of viruses - Cultivation assays of viruses | Paper lectures
Electronic screen
Video lectures via
electronic classes | Daily,
semester and
final exams | | | 3 rd | 2 | Identification | -Purification and identification of viruses | Paper lectures
Electronic screen
Video lectures via
electronic classes | Daily,
semester and
final exams | | | | | | - Laboratory safety - Reactions to physical and chemical agents | | D. 'I | |-----------------
---|-----------------------------|--|---|---------------------------------------| | 4 th | 2 | Replication | - Replication of the viruses | Paper lectures
Electronic screen
Video lectures via
electronic classes | Daily,
semester and
final exams | | 5 th | 2 | | امتحان فصلي اول | Paper lectures
Electronic screen
Video lectures via
electronic classes | Daily,
semester and
final exams | | 6 th | 2 | Viral genome | Defective viruses. Interaction between viruses. Viral genomes as a vector. | Paper lectures
Electronic screen
Video lectures via
electronic classes | Daily,
semester and
final exams | | 7 th | 2 | Pathogenesis | Pathogenesis and control of viral disease. Modes of transmission of viruses. Emerging viral disease. | Paper lectures
Electronic screen
Video lectures via
electronic classes | Daily,
semester and
final exams | | 8 th | 2 | Classificatio
n of Virus | DNA enveloped viruses: Herpes viruses. Hepatitis B virus. Pox virus. | Paper lectures
Electronic screen
Video lectures via
electronic classes | Daily,
semester and
final exams | | 9th | 2 | Classificatio
n of Virus | Non enveloped viruses: Adeno viruses. Papilloma virus. RNA enveloped viruses: Respiratory viruses. | Paper lectures
Electronic screen
Video lectures via
electronic classes | Daily,
semester and
final exams | | 10 th | 2 | Immunity
&antibody
production
against
viruses | -Host immune response (Defense Mechanisms) -The nonspecific immune defenses -The specific immune defenses Activities of interferon -Humoral immunity -Cellular immunity | Paper lectures
Electronic screen
Video lectures via
electronic classes | Daily,
semester and
final exams | |------------------|---|---|---|---|---------------------------------------| | 11 th | 2 | Pathogenes | Pathogenesis and control of viral disease. Modes of transmission of viruses. Emerging viral disease. | Paper lectures
Electronic screen
Video lectures via
electronic classes | Daily,
semester and
final exams | | 12 th | 2 | Prevention
and treatment
of viral
infection | Antiviral Drug: Treatment for Flu and other Common Viruses Inhibiting DNA/RNA Synthesis Inhibiting Viral Entry/Exit Inhibiting Viral Spread Virotherapy | | | | 13 th | 2 | Introduction of Vaccines | :Viral vaccines - Types of viralvaccines Perpetration ofviral vaccines | Paper lectures
Electronic screen
Video lectures via
electronic classes | Daily,
semester and
final exams | | 14 th | 2 | Viral
Vaccines | Passive immunization active immunization | Paper lectures
Electronic screen
Video lectures via
electronic classes | Daily,
semester and
final exams | | 15 th | 2 | General revision | | Paper lectures
Electronic screen
Video lectures via
electronic classes | Daily,
semester and
final exams | |------------------|-------|----------------------------------|---|---|---------------------------------------| | | | | | | | | Cours | e Str | ucture: Practic | al | | | | Week | Hours | Unit or subject name | Required Learning
Outcomes | Learning method | Evaluation
method | | 1 st | 2 | Introduction to virology lab | -History
-virology labrotary
and diagnosis
- | Paper lectures Electronic screen Video lectures via electronic classes | Daily,
semester and
final exams | | 2 nd | 2 | Introduction to virology lab | -Biosafety
requirement | Paper lectures
Electronic screen
Video lectures via
electronic classes | Daily,
semester and
final exams | | 3 rd | 2 | -Direct
detection of
Virus | -types of microscope
used in detection | Paper lectures
Electronic screen
Video lectures via
electronic classes | Daily,
semester and
final exams | | 4 th | 2 | Laboratory process | -Collection of specimen -Transport of specimen -Specimen processing and inoculation -Virus Identification | Paper lectures
Electronic screen
Video lectures via
electronic classes | Daily,
semester and
final exams | | 5 th | 2 | | Exam | Paper lectures
Electronic screen
Video lectures via
electronic classes | Daily,
semester and
final exams | | 6 th | 2 | Virus culture and cultivation | -CPE -Haemagglutination -Plaque assay -TCID50 assay | Paper lectures
Electronic screen
Video lectures via
electronic classes | Daily,
semester and
final exams | | 7 th | 2 | Detection of viral antibody | -Haemaglutination
-Inhibition test
-EIA\ELISA | Paper lectures
Electronic screen
Video lectures via
electronic classes | Daily,
semester and
final exams | | 8 th | 2 | Detection of viral Antigen | Immunofluorescenc e -EIA\ELISA -Western blot | Paper lectures
Electronic screen
Video lectures via
electronic classes | Daily,
semester and
final exams | | | | | -Imunopreceptation | | | |---|---|---|--|---|---------------------------------------| | 9th | 2 | - Immunofluore scence -EIA\ELISA -Western blot - Imunoprecept ation | -PCR
-Southern& northen
blot | Paper lectures
Electronic screen
Video lectures via
electronic classes | Daily,
semester and
final exams | | 10 th | 2 | -PCR
-Southern&
northen blot | -animal Inoculation
-Inoculation of egg | Paper lectures
Electronic screen
Video lectures via
electronic classes | Daily,
semester and
final exams | | 11 th | 2 | -animal Inoculation -Inoculation of egg | In vitro cell culture | Paper lectures
Electronic screen
Video lectures via
electronic classes | Daily,
semester and
final exams | | 12 th | 2 | In vitro cell culture | Typed of Vaccines | Paper lectures
Electronic screen
Video lectures via
electronic classes | Daily,
semester and
final exams | | 13 th | 2 | Typed of Vaccines | Types of preparation methods | Paper lectures
Electronic screen
Video lectures via
electronic classes | Daily,
semester and
final exams | | 14 th | 2 | | Vaccin
manufacturing
process | Paper lectures
Electronic screen
Video lectures via
electronic classes | Daily,
semester and
final exams | | 15 th | 2 | | Exam | | | | | | | | | | | 11. Course Evaluation Overall score out of 100 | | | | | | Overall score out of 100 (Semester grade = 40, including: 25 for theoretical + 15 for practical) (End-of-semester exam score = 60, including 40 for theory + 20 for practical) 12. Learning and Teaching Resources | Required textbooks (curric | | | | |----------------------------------|---|--|--| | books, if any) | | | | | Main references (sources) | Medical microbiology | | | | | Bailey & Scott's Diagnostic | | | | | Microbiology | | | | Recommended books and | Review of Medical Microbiology and Immunology | | | | references (scientific journals, | PUBMed , Google scholar | | | | reports) | 1 Oblined 3 doogle scholar | | | | Electronic References, Websites | PUBMed & Google scholar | | | # **English Language** #### 1. Course Name: **English Language** 2. Course Code: 414GS 3. Semester / Year: 1s semester / 2024-2025 4. Description Preparation Date: 1-10-2024 **5.** Available Attendance Forms: Weekly attendance # 6. Number of Credit Hours (Total) / Number of Units (Total) 2 Theoretical hours/week, one section * 15 weeks = 30 hours Number of units = 2 units #### 7. Course administrator's name (mention all, if more than one name) Name: Asst.Lec zahraa Abdulhasan Abdali Email: zahraa.a @sc.uobaghdad.edu.iq 8. Course Objectives To help students further develop their language skill, achieve a high level of proficiency in English, focus on building on the foundation established in the previous levels. To Expand students' vocabulary, grammar, reading, writing, listening, and speaking abilities and to enhance students' understanding of cultural aspects related to the English languag #### 9. Teaching and Learning Strategies - 1.Communicative Approach: Emphasize communicative activities that promote interaction among students. Encourage pair and group work, role-plays, and discussic to practice language skills in meaningful contexts. - 2.Integrated Skills: Integrate the four language skills (speaking, listening, reading, and writing) in lessons to create a balanced approach to language learning. Provide opportunities for students to use and develop these skills simultaneously. - 3. Vocabulary Expansion: Incorporate vocabulary-building exercises and activities throughout the course. Use real-life contexts, visuals, and practical examples to help students learn and remember new words. - 4.Grammar Focus: Teach and reinforce grammar structures in a systematic and progressive manner. Provide clear explanations, examples, and practice exercises to ensure
students understand and can apply the grammar rules correctly. | | | Unit or | Required Learning | Learning method | Evaluation | |------|------------|--------------|-------------------|-----------------|------------| | W | Ho | subject name | Outcomes | | method | | Week | urs | | | | | | , | V 1 | | | | | | | | | •Vocabulary: | | | |-----------------|---|------------------------------|--|---|---------------------------------------| | 1 st | 2 | Unit 1
Life Stories | Describing personalities, relationships, and experiences. •Grammar: Narrative tenses (past simple, past continuous, and past perfect). •Skills: Discussing personal experiences and telling stories. | Paper lectures
Electronic screen
Video lectures via
electronic classes | Daily,
semester and
final exams | | 2 nd | 2 | Unit2: Highs
and Lows | Vocabulary: Describing personalities, relationships, and experiences. Grammar: Narrative tenses (past simple, past continuous, and past perfect). Skills: Discussing personal experiences and telling stories. | Paper lectures
Electronic screen
Video lectures via
electronic classes | Daily,
semester and
final exams | | 3 rd | 2 | Unit 3:
Changing
Lives | Vocabulary: Describing personalities, relationships, and experiences. Grammar: Narrative tenses (past simple, past continuous, and past perfect). Skills: Discussing personal experiences and telling stories. | Paper lectures
Electronic screen
Video lectures via
electronic classes | Daily,
semester and
final exams | | 4 th | 2 | Unit 4:
Getting Away | •Vocabulary: Describing personalities, relationships, and experiences. •Grammar: Narrative tenses (past simple, past | Paper lectures
Electronic screen
Video lectures via
electronic classes | Daily,
semester and
final exams | | | | | continuous, and past perfect). •Skills: Discussing personal experiences and telling stories. VocabularyCommun ication problems and strategies. Grammar: Reported | | | |-----------------|---|--|--|---|---------------------------------------| | 5 th | 2 | Unit 5:
Communicatio
n Breakdown | speech (statements, questions, and commands) Skills: Dealing with misunderstandings and resolving conflicts. | Paper lectures
Electronic screen
Video lectures via
electronic classes | Daily,
semester and
final exams | | 6 th | 2 | Unit 6: The
Business
World
 | Vocabulary: Business and workplace terminology. Grammar: Zero and first conditionals, expressions for giving advice Skills: Discussing business topics and presenting ideas. | | | | 7 th | 2 | Mid-term
Exam | | | | | 8 th | 2 | Unit 7:
Technology
and Society | Vocabulary: Technology-related wordsandphrases.Gr ammar: Passive | Paper lectures
Electronic screen
Video lectures via
electronic classes | Daily,
semester and
final exams | | | | | voice, defining | | | |------------------|---|----------------|------------------------------------|---------------------------------------|---------------------| | | | | relative | | | | | | | clauses.Skills: | | | | | | | Discussing the | | | | | | | impact of | | | | | | | technology on | | | | | | | society. | | | | | | | | | | | | | | Vocabulary | | | | | | | Persuasive language | | | | | | | and techniques. | | | | | | | Grammar: Modal | | | | | | Unit 8: The | verbs for deduction | Paper lectures | Daily, semester and | | 9 th | 2 | Art of | and speculation. | Electronic screen Video lectures via | final exams | | | | Persuasion | | electronic classes | | | | | | Skills: Persuading | | | | | | | and arguing a point | | | | | | | of view. | | | | | | | | | | | | | | •Vocabulary: Health and well-being | | | | | | | vocabulary. | | | | | | Unit 9: Health | •Grammar: Unreal | Paper lectures | Daily, | | 10 th | 2 | Matters | expressing Electronic screen sem | semester and final exams | | | | | | hypothetical | Video lectures via electronic classes | mai cams | | | | | situations. •Skills: Discussing | | | | | | | health issues and | | | | | | | giving advice. Vocabulary: Work- | | | | | | | related vocabulary | | | | | | Unit 10: The | and | | Daily, | | 444 | | World of | collocations.Gramm | Paper lectures Electronic screen | semester and | | 11 th | 2 | Work | ar: Indirect | Video lectures via | final exams | | | | | questions, | electronic classes | | | | | | expressing purpose. | | | | | | | | | | | | | | Skills: Discussing | | | |------------------|---|---------------------------------------|----------------------|---|---------------------------------------| | | | | career goals and | | | | | | | work-related topics | | | | | | | Vocabulary: Cultural | | | | | | | differences and | | | | | | | customs. | | | | | | | Grammar: Third | | | | | | Unit 11: | conditional, | | | | 12 th | 2 | Cross-cultural | expressions for | | | | | | Encounters | giving opinions. | | | | | | | Skills: Discussing | | | | | | | cultural experiences | | | | | | | and adapting to | | | | | | | different cultures. | | | | | | | | | | | | | | Vocabulary: Cultural | | | | | 2 | Unit 11: Cross- cultural 2 Encounters | differences and | | | | | | | customs. | | | | | | | Grammar: Third | | | | | | | conditional, | Paper lectures Electronic screen Video lectures via | Daily,
semester and
final exams | | | | | expressions for | | | | 13 th | | | giving opinions. | | | | | | Lincounters | Skills: Discussing | electronic classes | | | | | | cultural experiences | | | | | | | | | | | | | | and adapting to | | | | | | | different cultures. | | | | | | | | | | | | | | Vocabulary: | | | | | | | Environmental | | | | | | Unit 12: The | issues and | Paper lectures | Daily, | | 14 th | 2 | Environment | sustainability. | Electronic screen
Video lectures via | semester and final exams | | | | | | electronic classes | | | | | | Grammar: Future | | | | | | | perfect, expressing | | | | | | | speculation and | | | |------------------|---------|------------------|---|--|--| | | | | possibility. | | | | | | | possibility. | | | | | | | Skills: Discussing | | | | | | | environmental | | | | | | | problems and | | | | | | | solutions. | | | | | | Preparatory | | | | | 15 th | | week before | | | | | 13 | | the Final | | | | | | | Exam | | | | | | | | | | | | 11. (| Cours | e Evaluation | | | | | Overa | ll scor | e out of 100 | | | | | | _ | ade = 40, | | | | | | | ester exam score | | | | | | | ing and Teachir | | | | | Requi | | | - Textbook: Soars, Liz and John (2003). <i>New Headway</i> Up | | | | | | books, if any) | Intermediate. Student's book | | | | Main | refer | ences (sources) | - Textbook: Soars, Liz and John (2003). New | | | | | | | Headway Upper-Intermediate. Student's book | | | | Recor | nmen | ded books and | New Headway Plus provides an integrated skills cou | | | | refere | | (scientific | | | | | | | eports) | work and everyday English segments | | | | Electr | | Referen | · · · · · · · · · · · · · · · · · · · | | | | Websi | ites | | series is published by Oxford University Press. | | | | | | | Visit their website at www.oup.com and | | | | | | | search for "New Headway Plus, Special | | | | | | | Edition, Upper-Intermediate" or browse their | | | | | | | English language teaching section for | | | | | | | information on the course. | | | # **Application of genetic engineering** | 1. Course Name: | |--------------------------------------| | Application of genetic engineering | | 2. Course Code: | | BIOT415 | | 3. Semester / Year: | | 2 nd semester / 2024-2025 | | 4. Description Preparation Date: | | 1-10-2024 | | 5. Available Attendance Forms: | | Weekly attendance | # 6. Number of Credit Hours (Total) / Number of Units (Total) 2 Theoretical hours/week, one section * 15 weeks = 30 hours 4 Practical hours/week per section * 15 weeks = 60 hours Total number of hours per section = 90 hours Number of units = 3 units (theoretical 2 +practical 1) # 7. Course administrator's name (mention all, if more than one name) -Name: Assist. Prof. Dr. Reema Mohammed Abed Email: Reema. abed@sc.uobaghdad.edu.iq -Name: Email: Prof.Dr. Abdulkareem Al-kazaz -Name: lecturer Dr. Zaid Ali Hussain # 8. Course Objectives In this course, students will explore the molecular methods and applications of recombinant DNA technology and the issues regarding their use through case studies on the effect of genetic engineering on medicine, agriculture, biology, forensics and other areas of technology. The course has 3 major components: 1) techniques used in the generation of recombinant molecules, 2) application of recombinant technology to diagnostics and therapeutics and 3) genetically modified organisms. The discussion of potential ethic concerns of genome manipulations will also be included in the course. # 9. Teaching and Learning Strategies - 1. Clarification and explanation of the study materials by the academic staff through the whiteboard or using PowerPoint. - 2. Providing students with homework. - 3. Preparing reports related to academic vocabulary. - 4. Visit websites to obtain additional knowledge of academic subjects. - 5. Brainstorming during lectures. | Week | Hours | Unit or subject name | Required
Learning
Outcomes | Learning method | Evaluation
method | |-----------------
-------|--|--|---|------------------------------------| | 1 st | 2 | DNA ligation
and joining
methods | Types of restriction
and ligation
enzymes and
methods of
restriction and
ligation | Paper lectures Electronic screen Video lectures via electronic classes | Daily, semester and final exams | | 2 nd | 2 | Transformation | Introduction to the process of conjugation in bacteria and its discovery | Paper lectures
Electronic screen
Video lectures via
electronic classes | Daily, semester
and final exams | | 3rd | 2 | Selection of recombinants | Methods of selection of clones cells | Paper lectures Electronic screen Video lectures via electronic classes | Daily, semester and final exams | | | | Gene structure | Genetic structure | Paper lectures | Daily, semester | |------------------|----------|-----------------|------------------------------------|---------------------------------------|---------------------------------| | 4 th | 2 | | of the gene and the | Electronic screen | and final exams | | 4 | <u> </u> | | basic components | Video lectures via | | | | | | of the gene | electronic classes | | | | | First exam | First exam | Paper lectures | Daily, semester | | 5 th | 2 | | | Electronic screen | and final exams | | | | | | Video lectures via electronic classes | | | | | In vitro | Types of in vitro | Paper lectures | D-11 | | _ | | mutagenesis | mutagenesis and | Electronic screen | Daily, semester and final exams | | 6 th | 2 | 111010080110010 | methods of | Video lectures via | and mai exams | | | | | mutagenesis | electronic classes | | | | | Application of | Introduction to the | | | | | | genetic | applications of | | | | | | engineering in | genetic engineering | Paper lectures | Daily, semester | | 7 th | 2 | medicine | in the medical field | Electronic screen | and final exams | | | _ | | and giving | Video lectures via | | | | | | examples such as | electronic classes | | | | | | gene therapy | | | | | | Application of | Introduction to the | Paper lectures | | | | | genetic | applications of | Electronic screen | | | | | engineering in | genetic engineering | Video lectures via | Daily, semester | | 8 th | 2 | agriculture | in agriculture and | electronic classes | and final exams | | | | | giving examples | Application of | Applications of | Paper lectures | Daily, semester | | 9th | 2 | genetic | genetic engineering | Electronic screen | and final exams | | | _ | engineering in | in industry and | Video lectures via | | | | | industry | giving examples | electronic classes | | | | | DNA chips | Introduction to | Paper lectures | Daily, semester | | 10 th | 2 | | DNA chips and | Electronic screen | and final exams | | | | | their uses in all | Video lectures via | | | | | | aspects | electronic classes | | | | | Probe and | Basics of designing | Paper lectures | Daily, semester | | 11 th | 2 | primer design | primers and probes | Electronic screen | and final exams | | | | | using various | Video lectures via | | | | | DCD D 1 1 | programs | electronic classes | | | | | PCR ,Real-time | Polymerase chain | Paper lectures | Daily, semester | | 12 th | 2 | PCR, RFLP | reaction technology | Electronic screen | and final exams | | | | | and studying its | Video lectures via | | | | | | different types | electronic classes | | | | | Genomic | Studying and | Paper lectures | Daily, semester | | 13 th | 2 | mapping | discovering genetic maps and their | Electronic screen Video lectures via | and final exams | | | | | types | electronic classes | | | 14 th | 2 | Second exam | - | | - | | 17 | | | | - | | | 15 th | 2 | Final exam | - | | _ | | 15 | | | | _ | - | | | l | <u> </u> | <u>l</u> | | | | Cours | se Str | ucture: Practical | | 1 | | |-----------------|--------|--|--|--|---------------------------------------| | Week | Hours | Unit or subject
name | Required
Learning
Outcomes | Learning
method | Evaluation
method | | 1 st | 2 | Single nucleotide polymorphisms | Types of mutations and single- nucleotide mutations and methods for calculating them in the gene | Paper lectures Electronic screen Video lectures via electronic classes | Daily,
semester and
final exams | | 2 nd | 2 | Single nucleotide polymorphisms experiment | Experimenting with the types of mutations and single-nucleotide mutations and methods for calculating them in the gene | Paper lectures Electronic screen Video lectures via electronic classes | Daily,
semester and
final exams | | 3 rd | 2 | Sequencing | Sequencing
methods and how to
mark the form to
send it to the
sequencing | Paper lectures Electronic screen Video lectures via electronic classes | Daily,
semester and
final exams | | 4 th | 2 | Sequencing experiment | Experimenting with the sequence and how to teach the model to send it to the sequencing | Paper lectures Electronic screen Video lectures via electronic classes | Daily,
semester and
final exams | | 5 th | 2 | Real time pcr | Introduction to the real-time polymerase chain reaction method | Paper lectures Electronic screen Video lectures via electronic classes | Daily,
semester and
final exams | | 6 th | 2 | Real time pcr
experimet | Conduct a real-time polymerase chain reaction experiment | Paper lectures Electronic screen Video lectures via electronic classes | Daily,
semester and
final exams | | 7 th | 2 | First exam | - | | | | | | Multiplex pcr | | Paper lectures | | |------------------|---|--|--|--|---------------------------------------| | 8 th | 2 | muniplex per | Introduction to the multiplex method | Electronic screen Video lectures via electronic classes | Daily,
semester and
final exams | | 9 th | 2 | Multiplex pcr
experiment
Part I | Conducting a
laboratory
multiplex
experiment, part
one | Paper lectures Electronic screen Video lectures via electronic classes | Daily,
semester and
final exams | | 10 th | 2 | Multiplex pcr
experiment
Part II | Conducting a
laboratory
multiplex
experiment, part
two | Paper lectures Electronic screen Video lectures via electronic classes | Daily,
semester and
final exams | | 11 th | 2 | Cloning | Introduction to the cloning | Paper lectures Electronic screen Video lectures via electronic classes | Daily,
semester and
final exams | | 12 th | 2 | Cloning experiment part I | Conducting a laboratory cloning experiment, part one | Paper lectures Electronic screen Video lectures via electronic classes | Daily,
semester and
final exams | | 13 th | 2 | Cloning experiment
Part II | Conducting a
laboratory cloning
experiment
Part two | Paper lectures Electronic screen Video lectures via electronic classes | Daily,
semester and
final exams | | 14 th | 2 | Second exam | - | - | - | | 15 th | 2 | Final exam | - | - | - | # 11. Course Evaluation Overall score out of 100 (Semester grade = 40, including: 25 for theoretical + 15 for practical) (End-of-semester exam score = 60, including 40 for theory + 20 for practical) # 12. Learning and Teaching Resources Required textbo curricular books, if any) Main references (sources) - Puehler, A. et al, A.K. 1984.Advanced molecular genetics - Rogen L., 1999. Applied molecular genetics. - Leland, H. et al. 2019. Genetics | Recommended books and | genetic, genes, genetic engineering | |-----------------------|-------------------------------------| | references (scientifi | | | journals, reports) | | | Electronic Refere | ne www. Genetic genie.org | | Websites | | # **Cytogenetic** # 1. Course Name: Cytogenetic 2. Course Code: **BIOT405** 3. Semester / Year: 2nd semester / 2024-2025 4. Description Preparation Date: 1-10-2024 # 5. Available Attendance Forms: Weekly attendance # 6. Number of Credit Hours (Total) / Number of Units (Total) - 2 Theoretical hours/week, one section * 15 weeks = 30 hours - 4 Practical hours/week per section * 15 weeks = 60 hours Total number of hours per section = 90 hours Number of units = 3 units (theoretical 2 +practical 1) # 7. Course administrator's name (mention all, if more than one name) Name: Prof. Dr. Maha Fakhry Altaee **Email:** Maha.Fakhry@sc.uobaghdad.edu.iq # 8. Course Objectives This course includes coverage of the concepts of cytogenetic, which deals with the study of chromosomes in the medical and genetic fields, as well as early investigation of the chromosomes responsible for many hereditary diseases by following modern techniques of genetic and tissue culture of animal cells. # 9. Teaching and Learning Strategies - 1. Clarification and explanation of the study materials by the academic staff through the whiteboard or using PowerPoint. - 2. Providing students with homework. - 3. Preparing reports related to academic vocabulary. - 4. Visit websites to obtain additional knowledge of academic subjects. - 5. Brainstorming during lectures. | V | E | Unit or | Required Learning | Learning method | Evaluation | |----|-----|--------------|-------------------|-----------------|------------| | Ve | lou | subject name | Outcomes | | method | | ek | rs | | | | | | | | | | | | | 1 st | 2 | Scope of genetics, Level of genetic testing | Types of genetics | Paper lectures
Electronic screen
Video lectures via
electronic classes | Daily,
semester and
final exams | |------------------|---
---|---|---|---------------------------------------| | 2 nd | 2 | Cell Division
and cell
cycle | Stages of cell cycle
Interphase and
mitosis | Paper lectures
Electronic screen
Video lectures via
electronic classes | Daily,
semester and
final exams | | 3rd | 2 | Mitosis
division | Phases of mitosis | Paper lectures
Electronic screen
Video lectures via
electronic classes | Daily,
semester and
final exams | | 4 th | 2 | Meiosis
division | Phases of two stages of meiosis | Paper lectures
Electronic screen
Video lectures via
electronic classes | Daily,
semester and
final exams | | 5 th | 2 | | Seasonal Exam | Paper lectures
Electronic screen
Video lectures via
electronic classes | Daily,
semester and
final exams | | 6 th | 2 | Gamete maturation | Oogenesis spermatogenesis | | | | 7 th | 2 | Mendalin
inheritance | Mendel laws of inheritance | Paper lectures
Electronic screen
Video lectures via
electronic classes | Daily,
semester and
final exams | | 8 th | 2 | Mode of inheritance | Dominant and recessives | Paper lectures
Electronic screen
Video lectures via
electronic classes | Daily,
semester and
final exams | | 9 th | 2 | Chromosome
structure and
chromosome
classification | Classification of chromosomes into seven groups | Paper lectures
Electronic screen
Video lectures via
electronic classes | Daily,
semester and
final exams | | 10 th | 2 | Visualization
of
chromosome | How to use stains and techniques to study chromosomes | Paper lectures
Electronic screen
Video lectures via
electronic classes | Daily,
semester and
final exams | | 11 th | 2 | Preparation
cells for
chromosome
observation | Study the material
that added to cells to
make chromosomes
more visible to study | Paper lectures
Electronic screen
Video lectures via
electronic classes | Daily,
semester and
final exams | | 12 th | 2 | | Seasonal exam | | | | 13 th | 2 | Abnormal chromosome number (autosomal aneuoploidy | Dawn synd.
Patau synd.
Edward synd. | Paper lectures
Electronic screen
Video lectures via
electronic classes | Daily,
semester and
final exams | |------------------|-------|---|--|---|---------------------------------------| | 14 th | 2 | Sex-
chromosome
aneuoploidy | Turner syndrome
Klinfelter synd.
Jacob synd | Paper lectures
Electronic screen
Video lectures via
electronic classes | Daily,
semester and
final exams | | 15 th | 2 | Structural chromosome aberrations | Deletion, insertion, translocation, ring | Paper lectures
Electronic screen
Video lectures via
electronic classes | Daily,
semester and
final exams | | Cours | e Str | ucture: Practic | al | | | | Week | Hours | Unit or subject name | Required Learning
Outcomes | Learning method | Evaluation method | | 1 st | 2 | List of apparatus | Apparatus in cytogenetic laboratory | Paper lectures
Electronic screen
Video lectures via
electronic classes | Daily,
semester and
final exams | | 2 nd | 2 | -types of media -material used -media preperation | Specific and component of media used in cell culture | Paper lectures
Electronic screen
Video lectures via
electronic classes | Daily,
semester and
final exams | | 3 rd | 2 | -cell cycle -mitosis steps -meiosis steps -differences between mitosis &meiosis | Mitosis and
Meiosis showed by
slides and video | Paper lectures
Electronic screen
Video lectures via
electronic classes | Daily,
semester and
final exams | | 4 th | 2 | Culturing process | Culturing of blood
lymphocyte from
human | Paper lectures
Electronic screen
Video lectures via
electronic classes | Daily,
semester and
final exams | | 5 th | 2 | -Preparation
from mice
-bone
marrow
-liver | Preparation of chromosome | Paper lectures
Electronic screen
Video lectures via
electronic classes | Daily,
semester and
final exams | | | | -tumor | | | | |------------------|---|--|--|---|---------------------------------------| | 6 th | 2 | Staining
methods | Staining of chromosome and Microscope | Paper lectures
Electronic screen
Video lectures via
electronic classes | Daily,
semester and
final exams | | 7 th | 2 | | exam | Paper lectures
Electronic screen
Video lectures via
electronic classes | Daily,
semester and
final exams | | 8 th | 2 | -Karyotype
-chromosome
number | Ordering chromosome as karyotype | Paper lectures
Electronic screen
Video lectures via
electronic classes | Daily,
semester and
final exams | | 9th | 2 | Numerical & structural | Chromosome aberration | Paper lectures
Electronic screen
Video lectures via
electronic classes | Daily,
semester and
final exams | | 10 th | 2 | sister
chromatide
exchange
,MI& MN) | Cytogenetic
Analysis | | | | 11 th | 2 | FISH,
Ctyovision | Molecular
Cytogenetic | Paper lectures
Electronic screen
Video lectures via
electronic classes | Daily,
semester and
final exams | | 12 th | 2 | Diagnostic applications | Modern methods
used in cytogenetic
tests | Paper lectures Electronic screen Video lectures via electronic classes | | | 13 th | 2 | Pedigreesymb
ols
Punnett
sequare | Pedigree Chart | Paper lectures
Electronic screen
Video lectures via
electronic classes | Daily,
semester and
final exams | | 14 th | 2 | Seminars | Seminars | Paper lectures
Electronic screen
Video lectures via
electronic classes | Daily,
semester and
final exams | | 15 th | 2 | | Seasonal Exam | | | | 15*** | - | | | | | # 11. Course Evaluation Overall score out of 100 (Semester grade = 40, including: 25 for theoretical + 15 for practical) (End-of-semester exam score = 60, including 40 for theory + 20 for practical) # 12. Learning and Teaching Resources | Required-textbooks | No required books, only lectures. | |----------------------------|-----------------------------------| | (curricular books, if any) | | | Main references (sources) | Human genetic, 2013 (8th edition) | | | | | Recommended books and | Any book in Human Cytogenetic, | | references (scientific | Human Chromosome | | journals, reports) | | | Electronic Reference | www.cytogenetic.org | | Websites | | # **Industrial biotechnology** # 1. Course Name: **Industrial biotechnology** 2. Course Code: BIOT425 3. Semester / Year: 2nd semester-4th class / 2024-2025 4. Description Preparation Date: 1-10-2024 # 5. Available Attendance Forms: Weekly attendance # 6. Number of Credit Hours (Total) / Number of Units (Total) - 2 Theoretical hours/week, one section * 15 weeks = 30 hours - 4 Practical hours/week per section * 15 weeks = 60 hours Total number of hours per section = 90 hours Number of units = 3 units (theoretical 2 +practical 1) # 7. Course administrator's name (mention all, if more than one name) Name: Prof. Dr. Khalid Jaber Kadhum Email: Khalid.kadhum@sc.uobaghdad.edu.iq # 8. Course Objectives - **1-** Preparing specialists familiar with the basics of biotechnology, theoretically and practically, who are able to meet the needs of the labor market. - **2-** Integrated fundamental concepts of biosciences and bioprocess engineering for the study of industrial biotechnology. - **3-** Familiarisation with the tools used to study and application of microorganisms in industry - **4-** Develop a good appreciation of the multidisciplinary aspects of biotechnology - **5-** Encouraging scientific research and providing students with basic skills in biotechnologies and their applications in all fields. # 9. Teaching and Learning Strategies - 1. Providing students with the basics and additional topics related to the outputs of thinking and analysis of biotechnologies. - 2. Forming discussion groups during lectures to discuss topics in industrial biotechnology that require thinking and analysis. - 3. Asking students a set of thinking questions during lectures such as what, how, when and why for specific topics. - 4. Giving student's homework that requires self-explanations in causal ways. | 10. | | Unit or | Required Learning | Learning method | Evaluation | |-----------------|-------|---|---|---|---------------------------------------| | W | Ho | subject name | Outcomes | Learning method | method | | Week | Hours | subject name | Outcomes | | inctiou | | 1 st | 2 | Industrial
Biotechnology | Definition and scope | Paper lectures
Electronic screen
Video lectures via
electronic classes | Daily,
semester and
final exams | | 2 nd | 2 | Bioprocess
technology | Basic concepts in Bioprocess technology | Paper lectures
Electronic screen
Video lectures via
electronic classes | Daily,
semester and
final exams | | 3rd | 2 | Industrial
microorganis
ms | Strategies of
acquisition of an
ideal producing
microorganism | Paper lectures
Electronic screen
Video lectures via
electronic classes |
Daily,
semester and
final exams | | 4 th | 2 | Improvement
of industrial
strains | Optimizing the culture medium and growth conditions: Genetic modification: The selection of induced mutants synthesizing improved levels of primary metabolites: feedback inhibition and repression | Paper lectures
Electronic screen
Video lectures via
electronic classes | Daily,
semester and
final exams | | 5 th | 2 | Improvement
of industrial
strains | The isolation of mutants which do not produce feedback inhibitors or repressors: The isolation of induced mutants producing improved yields of secondary metabolites | Paper lectures
Electronic screen
Video lectures via
electronic classes | Daily,
semester and
final exams | | 6 th | 2 | Production of microbial metabolites | Industrial microbiological products as primary and secondary metabolites | | | | 7 th | 2 | FIRST EXAM | FIRST EXAM | | | | 8 th | 2 | Production of
Ethanol | Biosyntheses of
ethanol; Ethanol
Production process;
Flocculence and
Cell Recycling | Paper lectures
Electronic screen
Video lectures via
electronic classes | Daily,
semester and
final exams | |------------------|---|------------------------------------|--|---|---------------------------------------| | 9th | 2 | Enzyme
technology | Enzymes, Commercial production of enzyme; Improvement of enzyme production; improvement of enzymes production, enzyme immobilization | Paper lectures
Electronic screen
Video lectures via
electronic classes | Daily,
semester and
final exams | | 10 th | 2 | Production of antibiotics | Why do microorganisms synthesize antibiotic: Strategies for the improvement of antibiotics production: Production of Penicillin: Commercial production of penicillin | Paper lectures
Electronic screen
Video lectures via
electronic classes | Daily,
semester and
final exams | | 11 th | 2 | Microbial
biomass
production | Single cell protein; The choice of an organism for SCP production; Substrate for SCP production; Single cell protein production processes | Paper lectures
Electronic screen
Video lectures via
electronic classes | Daily,
semester and
final exams | | 12 th | 2 | SECOND
EXAM | SECOND EXAM | | | | 13 th | 2 | Production of amino acids | Production glutamic
acid; production of
Lysine | Paper lectures
Electronic screen
Video lectures via
electronic classes | Daily,
semester and
final exams | | 14 th | 2 | Production of organic acids | production of Citric acid: Citric acid biosynthesis, Fermentation processes used in citric acid production | Paper lectures
Electronic screen
Video lectures via
electronic classes | Daily,
semester and
final exams | | 15 th | 2 | Exam | | | | |------------------|-------|---|---|---|---------------------------------------| | Cours | e Str | ucture: Practic | al | | | | Week | Hours | Unit or subject name | Required Learning
Outcomes | Learning method | Evaluation method | | 1 st | 2 | Isolation of industrial microorganis ms | Isolation of industrial microorganisms from the soil and their potential to produce antibiotics | Paper lectures
Electronic screen
Video lectures via
electronic classes | Daily,
semester and
final exams | | 2 nd | 2 | industrial
strains | Maintenance and preservation of industrial strains | Paper lectures
Electronic screen
Video lectures via
electronic classes | Daily,
semester and
final exams | | 3 rd | 2 | single cell
protein | Production of single
cell protein (SCP)
from yeast | Paper lectures
Electronic screen
Video lectures via
electronic classes | Daily,
semester and
final exams | | 4 th | 2 | ethanol
(biofuel) | Production of
ethanol (biofuel)
using wastepaper as
a feedstock | Paper lectures
Electronic screen
Video lectures via
electronic classes | Daily,
semester and
final exams | | 5 th | 2 | First exam | | | | | 6 th | 2 | Bacterial pigments | Production of prodigiosin by Serratia marcescens | Paper lectures
Electronic screen
Video lectures via
electronic classes | Daily,
semester and
final exams | | 7 th | 2 | bacteriocin | Production of bacteriocin from <i>Bacillus</i> isolate | Paper lectures
Electronic screen
Video lectures via
electronic classes | Daily,
semester and
final exams | | 8 th | 2 | protease | Production of protease by Aspergillus niger using solid state fermentation | Paper lectures
Electronic screen
Video lectures via
electronic classes | Daily,
semester and
final exams | | 9 th | 2 | cellulase | Production of cellulase by soil microorganisms | Paper lectures
Electronic screen
Video lectures via
electronic classes | Daily,
semester and
final exams | | 10 th | 2 | Second
exam | | | | | 11 th | 2 | amylase | Production of amylase | Paper lectures
Electronic screen
Video lectures via
electronic classes | Daily,
semester and
final exams | |---|---|----------------------|---|---|---------------------------------------| | 12 th | 2 | Immobilizatio
n | Immobilization of industrial microorganisms | | | | 13 th | 2 | Immobilizatio
n | Immobilization of industrial microorganisms | Paper lectures
Electronic screen
Video lectures via
electronic classes | Daily,
semester and
final exams | | 14 th | 2 | Immobilizatio
n 2 | Immobilization of industrial microorganisms | Paper lectures
Electronic screen
Video lectures via
electronic classes | Daily,
semester and
final exams | | 15 th | 2 | Exam | | | | | 11. Course Evaluation | | | | | | | Overall score out of 100 (Semester grade = 40, including: 25 for theoretical + 15 for practical) (End-of-semester exam score = 60, including 40 for theory + 20 for practical) 12. Learning and Teaching Resources | | | | | | | 12. Learning and Teaching Resources | | | | | |---|--|--|--|--| | Required textbooks, if any) | Industreial biotechnology for Dr.Nedam Al-Hydari. | | | | | Main references (sources) | Manual of Industrial Microbiology and Biotechnology (Third edition 2010) By Richard H. Baltz et. al Principles of fermentation technology (second edition 2003) By Stanbury PF; Whitaker; Hall SJ Bioprocess Engineering: Basic concepts by Fikret Kargi ➤ | | | | | Recommended books and references (scientific journals, reports) | 1. Fermentation Microbiology and Biotechnology A.L Demain <i>et. al</i> 2. Practical Fermentation Technology Brain Mchneil & Linda M. Harvey | | | | | Electronic Reference
Websites | WWW. Industrial technology.org | | | | # Genetic disease and molecular diagnosis ### 1. Course Name: Genetic disease and molecular diagnosis ### 2. Course Code: BIOT415 # 3. Semester / Year: 2nd semester / 2024-2025 # 4. Description Preparation Date: ### 1-10-2024 # 5. Available Attendance Forms: # Weekly attendance # 6. Number of Credit Hours (Total) / Number of Units (Total) - 2 Theoretical hours/week, one section * 15 weeks = 30 hours - 4 Practical hours/week per section * 15 weeks = 60 hours Total number of hours per section = 90 hours Number of units = 3 units (theoretical 2 +practical 1) # 7. Course administrator's name (mention all, if more than one name) Name: Assistant Prof. Dr. Aseel Shaker and Assistant. Prof. Dr. Rasha Al-khalidi Email: rasha .ali@sc.uobaghdad.edu.iq Aseel.mahmood @sc.uobaghdad.edu.iq # 8. Course Objectives - 1. Understanding the molecular basis of genetic diseases. - 2. Learning various molecular diagnostic methods used in identifying genetic mutations and abnormalities. - 3. Gaining proficiency in laboratory techniques such as PCR (Polymerase Chain Reaction), DNA sequencing, and other molecular biology assays. - 4. Exploring the role of bioinformatics in genetic disease diagnosis, including data analysis and interpretation. - 5. Understanding ethical considerations and implications associated with genetic testing and diagnosis. Overall, the course aims to equip students with the knowledge and skills necessary to accurately diagnose genetic disorders using molecular techniques, contributing to improved patient care and genetic counseling. # 9. Teaching and Learning Strategies - 1. Clarification and explanation of the study materials by the academic staff through the whiteboard or using PowerPoint. - 2. Providing students with homework. - 3. Preparing reports related to academic vocabulary. - 4. Visit websites to obtain additional knowledge of academic subjects. - 5. Brainstorming during lectures. | Λ | Н | Unit or | Required Learning | Learning method | Evaluation | |-----|-----|--------------|-------------------|-----------------|------------| | Vee | Tou | subject name | Outcomes | | method | | k | rs | | | | | | 1st | 2 | Introduction
in
Genetics
Disease | Introduction in Genetics Disease -History -Genetic Basis of Disease | Paper lectures
Electronic screen
Video lectures via
electronic classes | Daily,
semester and
final exams | |-----------------|---|--|---|---|---------------------------------------| | 2 nd | 2 | Polycystic
kidney disease | Symptoms-
-Inheritance
Diagnosis- | Paper lectures
Electronic screen
Video lectures via
electronic classes | Daily,
semester and
final exams | | 3rd | 2 | Burkitt's
lymphoma | Types- Genetics- SymptomsInheritance Diagnosis Inheritance- | Paper lectures
Electronic screen
Video lectures via
electronic classes | Daily,
semester and
final exams | | 4 th | 2 | Multiple
endocrine
neoplasia | Genetics-
Inheritance-
-Molecular
diagnosis | Paper lectures
Electronic screen
Video lectures via
electronic classes | Daily,
semester and
final exams | | 5 th | 2 | Retinoblastom
a | Genetics-
Inheritance-
-Molecular
diagnosis | Paper lectures
Electronic screen
Video lectures via
electronic classes | Daily,
semester and
final exams | | 6 th | 2 | NEUROFIBR
OMATOSIS | Genetics-
Inheritance-
-Molecular
diagnosis | | | | 7 th | 2 | EXAM | | | | | 8 th | 2 | Congenital
hypothyroidis
m | Genetics- Genetic cause of disease, , mechanism of disease, symptom, diagnosis by enzymatic reaction, diagnosis by sequencing, treatment, diet, fellow up | Paper lectures
Electronic screen
Video lectures via
electronic classes | Daily,
semester and
final exams | | 9 th | 2 | cystic fibrosis | Cystic fibrosis, inheritance pattern of cystic fibrosis, mechanism of disease, respiratory sign and symptom, digestive sign and symptom, diagnosis by PCR, diagnosis by real time PCR | Paper lectures
Electronic screen
Video lectures via
electronic classes | Daily,
semester and
final exams | | Week | Hours | Unit or subject name | Required Learning
Outcomes | Learning method | Evaluation
method | |------------------|-------|-----------------------------------|---|---|---------------------------------------| | Cours | | ucture: Practic | al | | | | 15 th | 2 | Final exam | | | | | 14 th | 2 | Breast cancer | -Detection braca 1
and braca 2 genes
Inheritance-
-Molecular
diagnosis - | Paper lectures
Electronic screen
Video lectures via
electronic classes | Daily,
semester and
final exams | | 13 th | 2 | Schizophrenia | Genetics-
Inheritance-
-Molecular
diagnosis | Paper lectures
Electronic screen
Video lectures via
electronic classes | Daily,
semester and
final exams | | 12 th | 2 | Alzahimer
disease | Genetics-
Inheritance-
-Molecular
diagnosis | | | | 11 th | 2 | Duchenne
muscular
dystrophy | GeneticsDuchenne muscular dystrophy, characterization of sever DMD, dystrophic gene, dystrophic protein, mutation of DMD gene downstream effect of the absence of dystrophin, DNA diagnosis in BMB/DMD, detection the disease using PCR | Paper lectures
Electronic screen
Video lectures via
electronic classes | Daily,
semester and
final exams | | 10 th | 2 | New-born
Screening test | testing, newborn screening test, newborn screen test in USA and Iraq, current molecular testing in newborn screeing test, galacosemia, genetics cause, pathophysiology, clinical feature, diagnosis, diet, fellow up | | | | | | | Molecular genetics | | | | 1 st | 2 | Nested PCR polymerase chain reaction detection Polycystic kidney disease Gene- expression profiling to Burkitt's | -DNA Extraction -PCR primer for PKD1 gene -PCR for PKD2 gene - Gele electrophoreses -RNA extraction -Reat time PCR - detection Myc's gene expression | Paper lectures Electronic screen Video lectures via electronic classes Paper lectures Electronic screen Video lectures via electronic classes | Daily, semester and final exams Daily, semester and final exams | |-----------------|---|--|---|--|--| | 3 rd | 2 | Multiplex PCR to multiple endocrine neoplasia | DNA Extractionspecific primers to MEN1 gene - Identification of a gene mutation by nucleic acid sequencing | Paper lectures
Electronic screen
Video lectures via
electronic classes | Daily,
semester and
final exams | | 4 th | 2 | Genetic
diaignosis for
nerofibroma | -TNF gene
expression by real
time
- TNF gene
sequencing | | | | 5 th | 2 | Diagnosis of DMD | Method (multiplex PCR) Preparation of multiplex kit Calculation the PCR reaction Preparation of agarose gel Result analysis | Paper lectures
Electronic screen
Video lectures via
electronic classes | Daily,
semester and
final exams | | 6 th | 2 | Diagnosis of
cystic fibrosis
(CFTR gene | Q-PCR
Quantitative PCR
and melt curve.
Result analysis | Paper lectures
Electronic screen
Video lectures via
electronic classes | Daily,
semester and
final exams | | 7 th | 2 | Gene
detection
alzahimer
disease | genetic factors and
polymerase chain
reaction | Paper lectures
Electronic screen
Video lectures via
electronic classes | Daily,
semester and
final exams | | 8 th | 2 | Nested PCR
polymerase
chain reaction
detection
disease | -DNA Extraction -PCR primer for braca1 gene -PCR for braca2 gene - Gele electrophoreses | Paper lectures
Electronic screen
Video lectures via
electronic classes | Daily,
semester and
final exams | | 9th | 2 | Gene expression real time Schizophrinia disease | Detection sequence mutation in genes | | | |------------------|---|---|---|---|---------------------------------------| | 10 th | 2 | Multiplex
PCR to | DNA Extractionspecific primers to gene - Identification of a gene mutation by nucleic acid sequencing | | | | 11 th | 2 | Sequencing | -detection
polymorphisms in
gene | Paper lectures
Electronic screen
Video lectures via
electronic classes | Daily,
semester and
final exams | | 12 th | 2 | Sequencing 2 | Detectiom types mutation in gene | | | | 13 th | 2 | Tag-man polymerase chain reaction | -prepar Borb
specific
-DNA extraction | Paper lectures
Electronic screen
Video lectures via
electronic classes | Daily,
semester and
final exams | | 14 th | 2 | Statical
analysis poly
morphisms | -products tag man
PCR
-program analysis | Paper lectures
Electronic screen
Video lectures via
electronic classes | Daily,
semester and
final exams | | 15 th | 2 | exam | | | | | | | | | | | # 11. Course Evaluation Overall score out of 100 (Semester grade = 40, including: 25 for theoretical + 15 for practical) (End-of-semester exam score = 60, including 40 for theory + 20 for practical) ### 12. Learning and Teaching Resources **textbo** "Molecular Biology Required Authored by Dr. Ghalib Al-Bakri" (curricular books, if any) 1-Disease Delusion: by Jeffrey S. Bland **Main references (sources)** (Author), Mark Hyman. 2015 2- Human Genetic Diseases. Edited by Dijana Plaseska-Karanfilska.2011 Human Genetic Diseases1-Recommended books and (scientific 2- The genetic basis of disease. Essays in references journals, reports...) Biochemistry 62(5):643-723 DOI: 10.1042/EBC20170053 -National human genome research institutes Electronic Reference 2- Online Degrees | Blog | What You Need to Websites Know About 5 Most Common Genetic Disorders # **Applications of animal cell culture** ### 1. Course Name: # Applications of animal tissue culture ### 2. Course Code: ### **BIOT350** ### 3. Semester / Year: 2nd semester / 2024-2025 # 4. Description Preparation Date: ### 1-10-2024 # 5. Available Attendance Forms: # Weekly attendance # 6. Number of Credit Hours (Total) / Number of Units (Total) - 2 Theoretical hours/week, one section * 15 weeks = 30 hours - 4 Practical hours/week per section * 15 weeks = 60 hours Total number of hours per section = 90 hours Number of units = 3 units (theoretical 2 +practical 1) # 7. Course administrator's name (mention all, if more than one name) Name: Assistant Prof. Dr. Rasha Talib Abdullah Assistant Prof. Dr. Hala Abdulkareem Rasheed Email: rasha.abdullah@sc.uobaghdad.edu.iq hala.rasheed@sc.uobaghdad.edu.iq # 8. Course Objectives The course aims to provide a comprehensive understanding of the concepts of animal tissue culture, including the techniques used, basic principles, and challenges associated with them. Study of techniques and tools: The course aims to introduce students to a variety of techniques and tools used in animal tissue culture, including cell culture techniques, molecular analysis, imaging techniques, and bioanalysis. Developing practical skills: The course includes
practical work periods that allow students to apply the concepts and techniques learned in practical work. Students are encouraged to acquire the skills necessary to grow animal cells and tissues in the laboratory. Study of practical applications: The course aims to review the practical applications of animal tissue culture in fields such as veterinary medicine, human medicine, and other biological sciences. Successes and challenges in these areas are reviewed and potential benefits and future applications are examined # 9. Teaching and Learning Strategies - 1. Clarification and explanation of the study materials by the academic staff through the whiteboard or using PowerPoint. - 2. Providing students with homework. - 3. Preparing reports related to academic vocabulary. - 4. Visit websites to obtain additional knowledge of academic subjects. - 5. Brainstorming during lectures. | 1 | H | Unit or | Required Learning | Learning method | Evaluation | |-----------------|------|---|--|---|---------------------------------------| | Wee
k | Hour | subject name | Outcomes | | method | | 1 st | 2 | Introduction to animal cell culture and its application | -Animal cell culture -Cell Strain -Growth requirement -Growth cycle -Application of cell line | Paper lectures
Electronic screen
Video lectures via
electronic classes | Daily,
semester and
final exams | | 2 nd | 2 | Model Systems | -Types of animal cell cultures - Cell cultures provide | Paper lectures
Electronic screen
Video lectures via
electronic classes | Daily,
semester and
final exams | | 3 rd | 2 | Tissue Repair,
Regeneration
and
Wound healing | -Repair of damaged tissues -Cell and Tissue Regeneration -Connective tissue deposition -Tissue engineering -Tools and Procedures Tissue Engineering -Scaffolds | Paper lectures
Electronic screen
Video lectures via
electronic classes | Daily,
semester and
final exams | | 4 th | 2 | Production of β-
Interferon | I. Importance of interferon- β II. Industrial Scale Production of β- Interferon III- Growth of Human Fibroblast Cells in Large Scale | Paper lectures
Electronic screen
Video lectures via
electronic classes | Daily,
semester and
final exams | | 5 th | 2 | Cancer
Research:
Toxicity
Testing | CytotoxicityCytotoxicity can lead healthy living cells to three potential cellular fates -Advantages of In vitro cytotoxicity and/or cell viability -How to measure cytotoxicity | Paper lectures
Electronic screen
Video lectures via
electronic classes | Daily,
semester and
final exams | | | | | -Classification of cytotoxicity and cell | | | | |------------------|---|---------------------------|--|--------------------------------------|---------------------|--| | | | | viability assays | | | | | | | | -Dye exclusion
assays | | | | | | | | -Colorimetric assays | | | | | | | | -Fluorometric assays -Luminometric | | | | | | | | assays | | | | | 6 th | 2 | | first Exam | | | | | | | | What are antibodies? -Characters of | | | | | | | MONOCLONA | Monoclonal | Paper lectures | Daily, | | | 7 th | 2 | LANT
IBODY | Antibodies -History of mAb | Electronic screen | semester and | | | / | 2 | шорт | development | Video lectures via | final exams | | | | | PRODUCTION | -Production process | electronic classes | | | | | | | -Applications of Monoclonal antibodies | | | | | | | | 1-Immunization of | | | | | | | | specific animal which generate hybridoma | | | | | | | | cell | | | | | | | | with spleen cell . 2. Screening of Mice | | | | | | | | for Antibody | | | | | | | 2 Hybridoma
Technology | Production 3 Isolation of | | | | | | | | Antibody | Paper lectures | Daily, semester and | | | | 2 | | producing Spleen | | | | | 8 th | | | cells . 4 .Isolation of | Electronic screen Video lectures via | final exams | | | | | recimoro | | myeloma | electronic classes | | | | | | cells . 5 .Fusion between | | | | | | | | spleen cell and | | | | | | | | myeloma cell .
6 .Selection of HAT | | | | | | | | medium. | | | | | | | | 7 .Isolation of hybridoma cell . | | | | | | | | 8 .Screening of | | | | | | | | hybridoma cell. Vaccine Production | | | | | | | | in Cell Culture | | | | | | | | Types of animal cell | | Daily, | | | | | Vaccine | substrates Selecting the Strains | Paper lectures | semester and | | | 9 th | 2 | production | for Vaccine | Electronic screen Video lectures via | final exams | | | | | 1 | Production
Batch culture | electronic classes | | | | | | | Continuous culture | | | | | | | | Different Vaccines Produced | | | | | | | | Cell cloning | | Daily, | | | 400 | 2 | CLONING | -Uses of cloning -Dilution cloning | Paper lectures Electronic screen | semester and | | | 10 th | | AND
SELECTION | -Stimulation of | Video lectures via | final exams | | | | | SELECTION | plating
efficiency | electronic classes | | | | | l | <u> </u> | childrene y | | | | | | | | -Conditions that
improve clonal
growth
-Suspension cloning
-Isolation of clones | | | |------------------|---|---|--|---|---------------------------------------| | 11 th | 2 | 3-D
Technology | Introduction 3 - D vs 2D cell culture -Advantages of 3D cell culture -In vitro tumor microenvironment in 3 D system -Mechanism of formation of spheroids | Paper lectures
Electronic screen
Video lectures via
electronic classes | Daily,
semester and
final exams | | 12 th | 2 | | Seasonal exam | | | | 13 th | 2 | 3-D
Technology of
tumor cells | 3D cell culture techniques for tumor models 3 -D in vitro tumor models -commercially available 3D culture -recent development on tumor models -applications of 3D tumor models | Paper lectures
Electronic screen
Video lectures via
electronic classes | Daily,
semester and
final exams | | 14 th | 2 | Recombinant
Technology
) Plasminogen(| PURIFICATION OF NATURAL HUMAN T- PA -MECHANISM OF ACTION OF T-PA -STRUCTURE- FUNCTION RELATIONS IN T-PA -THROMBOLYTIC PROPERTIES OF NATIVE HUMAN T-PA -CLONING AND EXPRESSION OF THE HUMAN T-PA GENE -THROMBOLYTIC PROPERTIES OF RECOMBINANT T- PA | Paper lectures
Electronic screen
Video lectures via
electronic classes | Daily,
semester and
final exams | | 15 th | 2 | Tests for genetic diseases | Amniocentesis, a diagnostic technique that enables doctors to remove and culture fetal cells from pregnant women for | Paper lectures
Electronic screen
Video lectures via
electronic classes | Daily,
semester and
final exams | | | | | the early diagnosis | | | | | |-----------------------------|------|---|--|---|---------------------------------------|--|--| | | | | of fetal disorders. 2.Examples of early | | | | | | | | | detection of diseases | | | | | | Course Structure: Practical | | | | | | | | | | | | | | | | | | Week | Hour | Unit or | Required Learning | Learning method | Evaluation | | | | × | F | subject name | Outcomes | | method | | | | 1 st | 2 | Equipment's
used in Animal
cell culture | Equipment required for ani malcell culture Cell culture media Cell Culture Environment | Paper lectures
Electronic screen
Video lectures via
electronic classes | Daily,
semester and
final exams | | | | 2 nd | 2 | Culture of
animal cells
subculturing | -Confluency -Cell viability -Protocol for Passaging or Subculturing -Protocol subculture on adherent cells Protocol subculture of suspension cells | Paper lectures
Electronic screen
Video lectures via
electronic classes | Daily,
semester and
final exams | | | | 3 rd | 2 | Tissue
Engineering | Goals of Tissue Engineering Why Tissue Engineering is Important STEPS: TISSUE ENGINEERING | Paper lectures
Electronic screen
Video lectures via
electronic classes | Daily,
semester and
final exams | | | | 4 th | 2 | Cytotoxicity
Testing
For adherent
cells | -Principle Outline of MTT assays Materials Procedure -Plating out cells -Drug addition -Estimation of surviving cell numbers | Paper lectures
Electronic screen
Video lectures via
electronic classes | Daily,
semester and
final exams | | | | 5 th | 2 | Cytotoxicity
For suspension
cells Testing | Principle Outline of MTT assays Materials Procedure -Plating out cells -Drug addition -Estimation of surviving cell numbers | Paper lectures
Electronic screen
Video lectures via
electronic classes | Daily,
semester and
final exams | | | | 6 th | 2 | Preliminary -Determination of Colony- Forming Efficiency materials and procedure -Isolation of Clonal Populations Using Cloning Rings | Cloning
Animal Cells
adherent cells | Paper lectures
Electronic screen
Video lectures via
electronic classes | Daily,
semester and
final exams | | | | 7 th | 2 | First exam | | Paper lectures
Electronic screen
Video lectures via
electronic classes | Daily,
semester and
final
exams | |------------------|---|---|---|---|---------------------------------------| | 8 th | 2 | Cloning
Animal Cells
For suspension
cells | Cloning Procedure with the Limiting -Dilution Assay material and procedure -Semi-solid Media Cloning material and procedure | Paper lectures
Electronic screen
Video lectures via
electronic classes | Daily,
semester and
final exams | | 9th | 2 | Generation of
Hybridoma
and isolate the
Monoclonal
Antibodies | Background Information Purification of antigen - Preparation of Immunogen - In-Vivo Immunization of mice - Determination of Antibody | Paper lectures
Electronic screen
Video lectures via
electronic classes | Daily,
semester and
final exams | | 10 th | 2 | Isolation the
Monoclonal
Antibodies | -Preparation of Spleen cellsFusion of spleen and myeloma cellsSelection of hybridoma cells -Hybridoma Molecular Mechanism of Hybridoma selection -Screening of hybridoma supernatant for presence of antibodyHarvesting of monoclonal antibody- | | | | 11 th | 2 | Methods for
Production of
Vaccines | Types of Vaccines -How does vaccine works? -Vaccine manufacturing -General method for vaccine production | Paper lectures
Electronic screen
Video lectures via
electronic classes | Daily,
semester and
final exams | | 12 th | 2 | Three
dimentional
cell culture | What is 3D Cell Culture? 2-D vs 3D Cell Cultures 3-D Cell Culture Techniques | | | | 13 th | 2 | Three
dimensional
cell culture | Applications of 3D cell culture | Paper lectures
Electronic screen
Video lectures via
electronic classes | Daily,
semester and
final exams | | 14 th | 2 | Second exam | | Paper lectures
Electronic screen
Video lectures via
electronic classes | Daily,
semester and
final exams | |---|---------|-------------------|--|---|---------------------------------------| | 11. (| Cours | e Evaluation | | | | | Overa | ll scor | e out of 100 | | | | | | _ | | ing: 25 for theoretical | - | | | (End-c | of-sen | nester exam score | e = 60, including 40 f | for theory $+20$ for pr | ractical) | | 12. I | _earn | ing and Teachin | g Resources | | | | Requi
(curri | | textbo | Practical Tissue Culture Applications 1979 | | | | Main references (sources) | | | Culture of animal cells a manual of basic technique and specialized applications □ Sixth Edition 2010 □ Animal Cell Biotechnology 2015 | | | | Recommended books and references (scientific journals, reports) | | | Searching in medical search engines for applications of
animal tissue transplantation, such as Google Scholar and
PUBMedSearching in medical search engines for
applications of animal tissue transplantation, such as
Google Scholar and PUBMed | | | | Electronic Reference Websites | | | There are many websites concerned with animal tissue culture applications Including medical websites, YouTube, and scientific research | | |